Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегруппировки фотохимическая

    В качестве примера изучения фотохимического превращения можно привести исследование перегруппировки [c.282]

    Независимо от мультиплетности возбужденного состояния, первичные фотохимические процессы могут носить самый различный характер диссоциация на радикалы, внутримолекулярный распад на молекулы, внутримолекулярные перегруппировки, фотоизомеризация, фотоприсоединение, фотодимер изация, фотоионизация, внутренний или внешний перенос электрона с образованием ионов, наконец, с молекулами других веществ возбуждения молекула может осуществлять фотосенсибилизированные реакции передачей своей энергии акцептору. [c.283]


    Фотохимические реакции протекают как в газообразном, так и конденсированном состояниях. По химическому характеру они чрезвычайно разнообразны и могут быть классифицированы на реакции присоединения, перегруппировки, разложения, окисления и т. д.  [c.200]

    Изомеризация двойной связи может происходить и другими путями. Нуклеофильные аллильные перегруппировки обсуждались в гл. 10 (разд. 10.8). Электроциклические и сигматропные перегруппировки рассматриваются в т. 4 на примере реакций 18-31—18-39. Миграцию двойной связи можно также осуществить фотохимически [59], а также под действием ионов металлов (главным образом комплексных ионов, содержащих Рс1, Р1, РЬ или Ни) или карбонилов металлов в качестве катализаторов [60]. В последнем случае возможны по крайней мере два механизма. Один из них, требующий водорода извне, называется механизмом присоединения — отщепления гидрида металла  [c.425]

    Ситуация обратна для [1,5]-сдвигов водорода. В этом случае термические супраповерхностные перегруппировки тривиальны, тогда как фотохимические — чрезвычайно редки [409]. Ниже приведен пример термической реакции  [c.194]

    Диены, содержащие алкильные или арильные заместители в положении С(3) [571], могут претерпевать фотохимическую перегруппировку в винилциклопропаны этот процесс носит название ди-п-метановой перегруппировки [572]. Интересным примером служит превращение 1-метилен-4,4-диметил-2,5-циклогексадиена в 2-метилен-6,6-диметилбицикло[3.1.0]-3-гексен [573]. Обычно указанным образом перегруппировываются только те 1,4-диены, которые находятся в возбужденном син-глетном состоянии, а триплетные состояния претерпевают иные превращения [574]. [c.221]

    Циклогексадиеноны также подвергаются фотохимическим перегруппировкам, но с образованием других продуктов, как правило, с раскрытием цикла [585]. [c.223]

    Галогенирование фенола Окисление гидрохинона в хинон Хинон как диенофил в реакции Дильса Альдера Фотохимическое внутримолекулярное [2 -I- 2]-циклоприсоединение Перегруппировка Фаворского со сжатием кольца Метилирование карбоновой кислоты диазометаном Число стадий 5 Общий выход 19% [c.606]

    Фотохимическое поведение у-пиронов существенно изменяется с увеличением объема заместителей. Так, в случае сильно замещенного производного (28) димернзация подавляется, и доминирующей фотохимической реакцией становится перегруппировка с образованием изомерного а-пирона (30) [34]. Эта реакция не сенсибилизируется ацетоном или ацетофеноном, и поэтому полагают, что она включает синглетные возбужденные состояния и происходит через интермедиат (29) (схема 17). [c.85]


    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]

    Химическая поляризация ядер наблюдается в продуктах термического и фотохимического распада перекисей и азосоединений, в продуктах реакций изомеризации и перегруппировки, при фотолизе карбонильных соединений, в продуктах реакций металлоргани-ческих соединений, в реакциях окисления, переноса электрона и т. д. [c.297]

    Миграция атома галогена из азотсодержащей боковой цепи в ароматическое кольцо при обработке НС1 называется перегруппировкой Ортона [368]. В основном образуется параизомер, а также некоторое количество орго-замещенного продукта. Реакция проводилась с N-хлоро- и N-бромоаминами и реже — с N-иодопроизводными. Амин должен быть ацилирован-ным, кроме случая PhN b, когда получается 2,4-дихлоранилин. Растворителем обычно служит вода или уксусная кислота. Имеется множество указаний (кросс-галогенирование, результаты экспериментов с мечеными соединениями и т. д.) на то, что данный процесс носит межмолекулярный характер [369]. Вначале НС1 взаимодействует с исходным соединением, давая ArNH O Ha и СЬ, затем хлор галогенирует кольцо по реакции 11-12. Одним из доказательств такого пути реакции служит выделение хлора из реакционной смеси. Перегруппировку Ортона можно проводить и фотохимически [370], а также при нагревании в присутствии бензоилпероксида [371]. Все это свободнорадикальные процессы. [c.379]

    В синтезе Арндта — Эйстерта ацилгалогенид превращается в карбоновую кислоту с одним дополнительным атомом углерода [156]. Первая стадия этого процесса — реакция 10-115 (т. 2). Перегруппировка происходит на второй стадии при действии на диазокетон воды и оксида серебра или бензоата серебра и триэтиламина. Эта перегруппировка носит название перегруппировки Вольфа. Данная реакция является лучщим методом увеличения длины углеродной цепи на один атом, если доступна карбоновая кислота [реакция 10-103 (т. 2) и 16-35 (т. 3) начинаются с алкилгалогенида]. Если вместо воды используется Н ОН, сразу выделяется эфир КСНгСООК. Аналогичным образом аммиак дает амид. Иногда используются другие катализаторы, например коллоидная платина, медь и т. д. Изредка диазокетон просто нагревают или подвергают фотолизу в присутствии воды, спирта или аммиака без какого-либо катализатора. Часто фотохимический метод [157] дает лучшие результаты, чем каталитический с использованием серебра. Естественно, полученные другим способом диазокетоны также способны к перегруппировке [158] Реакция весьма универсальна. Группы К могут быть алкилами или арилами они могут содержать различные функциональные группы, включая ненасыщенные, но исключая группы, кислые настолько, чтобы реагировать с СНгНг или диазокетонами (например, т. 2, реакции 10-6 и 10-28). Иногда реакцию проводят с другими диазоалка- [c.146]

    Когда перегруппировка Вольфа проводится фотохимически, механизм в основном тот же самый [157], хотя возможны и дополнительные стадии. Некоторые из образовавшихся кетокар-бенов могут претерпевать карбен-карбеновую перегруппировку через оксирен [163]. Это было показано в экспериментах с С, которым была помечена карбонильная группа диазокетона. 06- [c.147]

    Другие реагенты превращают гидроксил в сложноэфирную уходящую группу (например, 0РС14 из РОб и ОЗОгОН из концентрированной серной кислоты [255]). Одновременно с интермедиатом 69 может взаимодействовать уходящая группа, отличная от Н2О. Промежуточное соединение 69 было обнаружено с помощью ЯМР- и УФ-спектроскопии [256]. Показано, что перегруппировка протекает по другому механизму — через образование нитрила при фрагментации с последующим присоединением по Риттеру (т. 3, реакция 16-56) [257]. Перегруппировки Бекмана проводят также фотохимически [258]. [c.163]

    Известна также фотохимическая перегруппировка Валлаха [614] это внутримолекулярный процесс, в котором группа ОН появляется в дальнем цикле и в качестве продукта образуется о-гидроксиазосоединение [615]. [c.228]

    Фотохимическим способом можно приготовить ряд других физиологически активных соединений. Например, это проста-гландины — имеющие большое химиотерапевтическое значение гормоны, — которые можно синтезировать, начиная с фотолиза циклических кетонов. В другой сфере производства путем фотоокисления цитронеллола получаются стереоизомеры окисленного розового, применяемые в парфюмерии. Возбужденный (синглетный) кислород (см. с. 175) образуется путем фотосенсибилизации красителем типа бенгальского розового, который передает энергию возбуждения иа основное (триплетное) состояние молекулы Оз при сохранении общего спина, Гидроперок-сиды образуются присоединением синглетного кислорода к двойной связи, а последующее восстановление дает соответствующие спирты. Аллильная перегруппировка в кислом растворе, сопровождаемая дегидрированием, приводит к конечному продукту  [c.286]


    При УФ-экспонировании слоя ЦПИ, содержащего соединение (II) в том же соотношении оказалось, что уже через 15 мин наблюдалась дифференциация растворимости в спирте облученных и необлученных участков пленки, обусловленная фотоструктурированием ЦПИ в местах экспонирования. Следует отметить резкие различия в наклоне интегральных сенситометрических кривых для слоев ЦПИ с соединениями (I) и (И). В слоях, содержащих бис-лактонное производное (И), фотопроцесс протекает с меньшей скоростью. Известно [8], что эфиры лактонов под действием света или термически в присутствии кислот Льюиса, подвергаются внутримолекулярной перегруппировке Фриса. Для соединения (II) можно предположить тот же радикальный механизм фотопревращения. Возбуждение светом приводит к гомолитическому расщеплению связи о-карбонил с последующей миграцией ацила в ядро. Первоначально оба радикала (фенок-си- и карбонильный) остаются в клетке растворителя или полимера. Внутриклеточное взаимодействие, эффективно реализуемое в жесткой полимерной клетке, ведет к получению оксикетонов [9,10]. Образование о-оксиарилкетонной группы при фотохимической перегруппировке Фриса свидетельствует о возникновении "эффекта самостабилизации" [11] за счет образования сильной водородной связи С=0 - Н0. Вследствие этого производное (II) играет роль УФ-абсорбера, однако 8 ор для слоя композиции (ЦПИ) (П) составляет Т370 см /мДж, т.е. (II) играет роль слабого фотосенсибилизатора. [c.148]

    В качестве источника радикалов можно использовать перекись ацетила, перекись бензоила или а.сс-азо-бис-изобутиронитрил или аналогичные нитрилы [82, 831. При фотохимической или термической реакции обычно получают одинаковые ре.чультаты (пример в.6). В большинстве случаев реакции проводят, при температуре 60— 100 °С, а иногда под давлением азота (если олефин является газообразным). Во многих случаях получены удовлетворительные выходы продуктов присоединения с составом 1 1. Основной побочной реакцией является, по-видимому, образование теломера, а иногда перегруппировка или дегидрогалогенирование ожидаемого продукта. Были изучены условия образования теломеров (84). Теломеризация подавляется в присутствии большого избытка галогенметана в случае фторзамещенных ее можно полностью исключить, использовав в качестве катализатора хлористую медь. Это отличный метод синтеза (пример б). [c.416]

    Хорошо известными соединениями являются ацилазиды. Их роль в термической перегруппировке Курниуса — реакции, которая явно ие связана с нитренами, — рассматривается в разд. 8.3.2. При фотохимическом разложении ацилазиды проявляют свойственную нитренам ре- акционную способность. В частности, наблюдались внутри мол екуляр ные реакции внедрения по связи-С—Н, хотя обычно с невысокими выходами [62]  [c.280]

    При термическом или фотохимическом разложении диазокетонь дают продукты перегруппировки. Реакция известна как перегруппировка Вольфа. Она лежит в основе удобного метода получения гомологов карбоновых кислот, удлиненных на один атом углерода. Этот метод из-вметен как реакция Арндта — Эйстерта [c.281]

    S43 2/755 перициклические, см. Перициклические реакции сигматропные, см. Сигматропные перегруппировки синхронные 4/743 стереоспецифические 5/737, 738 фотохимические 4/744 5/737 фрагментация 5/365 циклоприсоедниение 5/736, 737 электроциклические 3/938 4/420 Сода 1/735, 972 2/584, 587, 639, 640, 709, 938, 1096 3/351, 362, 847, 1000 4/681, 757, 1020 5/45, 467, 985 [c.710]

    Краун-эфирный фрагмент в молекуле фотохромного соединения может приводить к значительному изменению его спектральных и фотохимических свойств при образовании комплексов с катионами металлов. В работе представлена краунсодержа-щая система 32, способная к фотоацилотропной N- 0 перегруппировке. М-ацетилзамещенное соединение 32 получено действием ацетилхлорида в присутствии избытка триэтиламина на аминови-нилкетон, являющийся продуктом конденсации 3-гидрокси- [c.334]

    Описана фотохимическая перегруппировка 5-диметил- и 5-метилфенил-амино-пиррол-2-онов до диметил- метилфениламиноциклопропиловых эфиров изоциановой кислоты с выходом 80-90% [241]. [c.35]

    Вполне очевидно, что для эффективности необходимо поглощение излучаемого света. Согласно закону фотохимического эквивалента Эйнштейна, каждая реагирующая молекула поглощает один квант. Однако в химической практике необходимое количество квантов сильно колеблется. К реакциям, где число молекул, реагирующих с поглощением одного кванта, превышает единицу, относятся такие, когда под влиянием света образуются частицы, которые сами по себе или путем превращения в другого рода частицы способны к непрерывному самовоспро-изводству. Это происходит в случае образования свободных радикалов, вызывающих цепную реакцию. С другой стороны, активированная молекула может различным образом использовать поглощенную энергию, и в таких случаях квантовый выход в любом направлении окажется меньше единицы. Механистически возбужденная молекула как в начальном состоянии, так и в форме, образующейся в результате нерадиационного превращения, может использовать поглощенную энергию для процессов теплового соударения, гомолиза, перегруппировки, реэмиссии света и т. д., причем конечный продукт или продукты могут образоваться очень сложным путем, В этой статье нет смысла [c.371]

    В этот раздел включены наиболее интересные, необычные фотохимические превращения, но подробные данные о механизме этих реакций часто отсутствуют. Описаны немногие примеры перегруппировки простых а, -ненасыщенных кетонов. Так, при облучении ненасыщенного кетона вербенона (XXVHI6) вместо димеризации происходит перегруппировка в хриаантенон ( окись карена ) [308]. [c.393]

    При фотохимическом превраш ении кальциферола расш еп-ляется диаллишьная связь и прямо или косвенно происходит перегруппировка триена. Природа промежуточных продуктов не установлена [123]. Предполагается, что родственный промежуточный продукт играет существенную роль при превращении дегидроэргостерина (см. стр. 408). [c.407]

    Фотохимическую перегруппировку нитритов в нитрозосоединеяня, претерпевающие затем изомеризацию нлн димернзацию. называют перегруппировкой БАРТОНА  [c.381]

    Эти фотохимические перегруппировки у-пиронового кольца тесно связаны с некоторыми фотохимическими реакциями пирилиевых соединений, рассмотренными в гл. 18.1. Это, в частности, относится к реакциям 4-гидроксипирилиевых солей, которые образуются in situ при растворении соответствующего у-пирона в сильной кислоте. [c.86]

    Помимо димеризации и перегруппировки у-пироны подвергаются также другой фотохимической реакции. Это [2 21-циклоприсоединение кетена к карбонильной группе с последующим отщеплением диоксида углерода и образованием метиленпирана, например (38) [35]. В этой реакции, как и во всех других описанных выще фотохимических реакциях, кольцо у-пирона ведет себя подобно простым алифатическим соединениям. [c.86]


Смотреть страницы где упоминается термин Перегруппировки фотохимическая: [c.2099]    [c.14]    [c.193]    [c.196]    [c.244]    [c.257]    [c.280]    [c.117]    [c.1999]    [c.2099]    [c.2099]    [c.2334]    [c.60]    [c.457]    [c.566]    [c.47]    [c.65]    [c.213]   
Химия природных соединений фенантренового ряда (1953) -- [ c.64 , c.168 , c.171 , c.314 , c.360 , c.600 ]




ПОИСК







© 2024 chem21.info Реклама на сайте