Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен инициаторы

    Не только сам пропилен, но и его полимер (например, полимер, соответствующий V) может действовать как инициатор цепи в ступени [c.313]

    Олигомеризация пропилена. Об олигомеризации олефинов под действием оснований сообщалось еще в 1956 г. [7], причем были использованы чистые олефины (и циклоолефины) или смеси двух олефинов в присутствии натрия (катализатор) и антрацена (инициатор). Исследовали этилен, пропилен, изобутилен и циклогексен. [c.165]


    Высказывалось предположение [23], что инициатором цепи для стадии 1 наряду с олефином может быть и полимерный олефин. Например, при алкилировании пропиленом возможно участие димера пропилена  [c.181]

    Этилен содержит примеси, которые по их влиянию на процесс полимеризации можно разделить на активные и инертные. Активные примеси могут приводить к сшивке макромолекул полиэтилена (ацетилен), сополимеризоваться с этиленом (пропилен), инициировать полимеризацию (кислород) и обрывать растущую цепь полиэтилена (водород, сероводород). Инертные примеси (пропан и др.) лишь разбавляют этилен. Рециркулирующий (возвратный) этилен может содержать также эфиры и альдегиды, которые, окисляясь, могут вести, себя как активные примеси. Практически для получения полиэтилена высокого давления с инициатором кислородом применяют этилен с чистотой не менее 99,9% (об.). [c.74]

    Реакция присоединения ацетальдегида к пропилену в присутствии инициатора описывается кинетическим уравнением г = А[(1С)2] [СН,СНО] [С Н,]" . [c.370]

    Первый зарегистрированный пример применения ионного механизма дисперсионной полимеризации — анионная полимеризация стирола в гептане с использованием бутиллития в качестве инициатора [40]. Образующуюся дисперсию полистирола стабилизировали различными типами каучуков [полибутадиен, поли(бу-тадиен-со-стирол) и полиизопрен]. Позднее для этих целей использовали поли(этилен-со-пропилен), атактический полипропилен и натуральный каучук [41 ]. В случае каучуков, содержащих ненасыщенные группы, появляется возможность прививки растущего полистирола. Привитой сополимер, вероятно, функционирует как истинный стабилизатор для образующегося полимера. [c.241]

    Пригодность отдельных олефинов для этой реакции различна. Простые этилены (этилен, пропилен) реагируют только в присутствии инициаторов (органических перекисей), образуя вещества исключительно высокого молекулярного веса (степень полимеризации от 2000 до 3700). [c.131]

    Константы сополимеризации на комплексных металлооргапических катализаторах при переходе от этилена к пропилену по порядку величин изменяются в том же направлении, что и при сополимеризации с радикальными инициаторами под высоким давлением [469]. [c.100]

    Процессы производства пластических масс и химических волокон многостадийны, сложны и почти все пожаро- и взрывоопасны. Это объясняется тем, что сырьем и вспомогательными веществами при производстве пластмасс и волокон являются огнеопасные газы —этилен, ацетилен, пропилен, формальдегид и др. жидкости—сероуглерод, ацетон, бензол, бензин, циклогексан, метиловый спирт и др. и твердые вещества — целлюлоза, капролактам, диметилтерефталат, нитрил акриловой кислоты, соль АГ и др. Для химических реакций используют катализаторы и инициаторы, представляющие собой взрывоопасные, воспламеняющиеся на воздухе вещества (металлоорганические катализаторы) или сильные окислители, способные разлагаться со взрывом и вызывать воспламенение других веществ (порофоры, перекиси). [c.3]


    Для уменьшения числа вспомогательных операций и их упрощения в этом процессе стремятся повышать активность инициирующих систем [3], использовать растворимые комплексы [4], разрабатывать процессы без растворителя [5] в среде жидкого мономера (пропилен) или в газовой фазе (этилен). Такие приемы позволяют исключить операции удаления остатков инициатора и отделения растворителя. [c.251]

    Отличительная особенность реакций алкилароматических соединений с олефинами, катализируемых основаниями, — возможность удлинения алкильной группы. Алкилароматические углеводороды, используемые в этой реакции, должны содержать бензильный атом водорода, а в качестве наиболее часто применяемых олефинов можно назвать этилен, пропилен, стирол и его производные. Весьма эффективными катализаторами являются натрий и калий, причем натрий обычно требует присутствия инициатора для начала реакции. [c.169]

    Использование в качестве инициаторов хлорирования УФ- и особенно Y-излyчeния дает возможность получить ХПВХ, обладающий благодаря упорядоченной структуре более высокими теплостойкостью и температурой размягчения [61]. Такой ХПВХ не менее чем на 80% состоит из блоков 1,2-дихлорэтилена с правильно чередующимися группами. Трехмерные сшитые структуры практически отсутствуют. В качестве инициаторов предлагается также использовать 0,01—1% непредельных соединений (этилен, пропилен, трихлорэтилен, перхлорэтилен и т. д.). Хлорирование проводят в течение 30—60 мин при 100—110°С в хлорбензоле. Получаем мая перхлорвиниловая смола используется для покрытий [64]. [c.13]

    Механизм уравнений (1)—(4) одинаков с предложенным ранее [1] для реакции трифториодметана с тетрафторэтиленом, где предполагалось, что радикал СРз является инициатором полимеризационной цепи. Изучение реакций трифториодметана с пропиленом и хлористым винилом было предпринято с целью определения направления присоединения и установления того факта, что инициатором цепи является радикал СРд, а не атом иода. [c.175]

    Фталевый ангидрид, 1,2-пропилен-оксид Стирол, фенол СО Полиэфир Присоединен о-(а-Метилбен-зил)-фенол (I), 2,6-бис-(а-метилбензил)-фенол (П), 2,4-бис-(а-метил бен зил) -фенол (П1) Реакции с уч СН4, НгО Лаурат Zr—HjO (инициатор) атмосфера азота, 120—150° С [800] ие по С=С-связи Тетрабутилцирконат в ксилоле, 150—206° С, 30 мин. Выход I — 64,2%, II — 10,3%, III — 2,7% [801] астием водорода N1—Zr02, Ni—ZrOs—MgO (100 г 9 6) 170— 210° С [802] [c.378]

    Появление активных центров вследствие распада инициатора в среде ненасыщенного соединения приводит к развитию радикальной полимеризации и образованию макромолекул только при определенных благоприятствующих этому обстоятельствах. Главное из них — принципиальная способность данного соединения к цепной реакции роста. Из самого факта присоединения свободного радикала В к двойной связи мономера еще не следует, что образовавшийся при этом новый радикал КМ вызовет реакцию роста полимерной цени. Как хорошо известно, существуют вещества, взаимодействующие со свободными радикалами по двойной связи, но не способные к образованию высокомолекулярных соединений при радикальном инициировани . Типичны в этом отношении пропилен, изобутилен и другие а-олефины, простые виниловые эфиры, а также большинство три- и тетразамещенных этилена и бутадиена. На причинах, обусловливающих это явление, мы остановимся далее. [c.214]

    До проведения процесса сшивания (отверждения) полиэфиры обычно представляют собой вязкие жидкости или твердые вещества с низкой температурой размягчения. Их получают путем ступенчатой полимеризации гликоля, например пропилен-гликоля HO H (СНз) СНгОН, со смесью насыщенных и ненасыщенных дикарбоновых кислот, например фталевой и малеиновой. Последняя обеспечивает создание реакционноспособных центров для последующего сшивания полиэфира. Перед отверждением ненасыщенные полиэфиры смешивают с жидким мономером, таким, как стирол или метилметакрилат. Это приводит к понижению вязкости системы, что облегчает дальнейшую работу с ней и делает возможным образование поперечных связей. Непосредственно перед нанесением ненасыщенного полиэфира на армирующий наполнитель (обычно стекловолокно) к нему добавляют свободнорадикальный инициатор. Сшивание [c.266]

    Реакция (11), в отличие от (9) и (10), не всегда сопут ствует полимеризации. Она типична для перекисных инициаторов, в случае к-рых С достигает величин порядка 10 . Особенно важная характеристика, отражающая принципиальную способность мономера к образованию макромолекул при Р. п.,— величина См-Ее слишком высокое значение (напр., 0,1 для аллилаце-тата) исключает такую возможность. Близкая по порядку величина свойственна пропилену и его гомологам, чем объясняется их неспособность к Р. п. в обычных условиях. Возможность синтеза полипропилена методом Р. п. при высоком давлении обусловлена тем, что из двух реакций, определяющих конечный эффект (рост и передача цепи на мономер), только первая протекает с существенным уменьшением объема. [c.133]


    Дидж, Гаррис и Маккензи получили полиоксипропиленгликоль с молекулярным весом 2000 в результате взаимодействия при 120—160 °С окиси пропилена с пропилен-гликолем (непрерывный и периодический процесс) . В качестве катализатора применяли гидроокись калия (0,1 — 0,5%). В качестве инициатора полимеризации было предложено применять дипропиленгликоль . [c.43]

    Другие а-олефины (пропилен, цзобутилеп, октен-1, ундеценонл-хлорид, аллилхлорид, различные фторированные олефины) ведут себя аналогично [421, 422, 424[. Гептадиен-1,6 в присутствии азосоединения в качестве инициатора реагирует следующим образом  [c.147]

    Почти одновременно с Циглером, Натта с сотр. установил [16], что каталитическая система, состоящая из треххлористого титана и триэтилалюминия, является катализатором полимеризации пропилена, высокомолекулярные соединения которого ранее не были известны. Наряду с этим Натта с сотр. обнаружил явление стереорегулирующего действия катализаторов. Это открыло совершенно новые перспективы в области теории и практики химии высокомолекулярных соединений. Из одного и того же мономера оказалось возможным получать полимеры, обладающие существенно различающимися свойствами. Благодаря этому открытию синтезированы и широко применяются полимеры, которые не могли быть получены под действием инициаторов радикальной или катализаторов катионной и анионной полимеризации изотактический полипропилен, ударопрочный стереорегулярный полистирол, синтетический натуральный каучук , различные типы стереорегулярных нолибутадиенов, изотактический полибутен-1, поли-4-метилпен-тен-1, полчвинилциклогексан, сополимеры этилена с пропиленом, оптически активные полиолефины и полимеры ацетиленов, обладающие полупроводниковыми свойствами. [c.11]

    Легкость радикального присоединения тиолов к олефинам зависит от их строения. Так, сероводород довольно легко присоединяется при сильном облучении УФ-светом [82], рентгеновскими лучами [83] или улучами [84], тем не менее он реагирует менее энергично, чем тиофенол и тиоуксусная кислота. Реакция с сероводородом идет вначале довольно медленно, затем она ускоряется благодаря радикальному механизму, в результате чего выход продукта присоединения довольно высокий. Так, например, в реакции присоединения сероводорода к пропилену под действием у-лучей О 10 при кратковременном облучении выход смеси н-пропан-тиола и ди-н-пропил сульфид а составляет более 90% [84]. Присоединение тиолов к олефинам при у-облучении тоже проходит легко [84—87], при этом образуются те же продукты реакции, как и при УФ-облучении О превышает 10 . Эти данные свидетельствуют о высоком коэффициенте полезного действия у-лучей при проведении этой реакции и открывают возможность ее промышленного использования, аналогично тому, как это было осуществлено в реакции присоединения галогеноводородов к олефинам [88]. В литературе имеются также данные по радикальному присоеди -нению тиолов к олефинам, малеиновой кислоте, итаконовой кислоте и другим непредельным кислотам с применением перекисей в качестве инициаторов реакции [4, 89]. [c.83]

    Разработаны методы получения хлорсульфированных и хлорированных атактических ПО (сополимеров этилена с пропиленом, полипропиленом и др.) хлорированием или хлорсульфированием в суспензии в присутствии бетаинов и радикальных инициаторов . Хлорсульфиро-вание ПП осуществляют в растворе газообразным хлором и 3 О2 аналогично процессу хлорсульфирования ПЭ и в тех же аппаратах. Скорости реакции хлорсульфирования ПП в суспензии определяется концентрацией непрореагировавшего водорода в полимере при концентрации во- [c.66]

    Опубликован ряд лабораторных работ по пиролизу с применением гомогенных инициаторов, в качестве которых используют органические соединения серы [33], кислород и кислородсодержащие соединения, а также углеводороды (например, этан). Показано 34], что добавка этана ускоряет разложение олефинов (пропилен, изобутен) с образованием этилена. Наряду с перечисленными добавками в качестве инициаторов проверены пероксидные соединения и галогеноводороды, причем предпочтение должно быть отдано последним, так как их расход на порядок меньше, чем расход пероксидов. Это видно из данных, приведенных в табл. 1.15 по пиролизу прямогонного бензина [35]. При гомогенноинициированном пиролизе атмосферного газойля [36] также получается увеличенный выход олефинов (этилена на 25—35%, пропилена на 13—30%) по сравнению с процессом без инициаторов. [c.47]

    Рассмотрим доводы, приведенные в пользу координационноанионного механизма полимеризации ВХ. Это — повышенная кристалличность ПВХ [ и сополимеризация ВХ с пропиленом ], который практически не способен к радикальной гомополимеризации. Оба эти довода оказались поколебленными после того, как было установлено, что и при радикальном инициировании можно прийти к таким же результатам. Повышенная кристалличность была обнаружена у низкомолекулярного ПВХ, полученного с радикальными инициаторами 1. Поскольку [c.204]

    Полимеризация стирола в присутствии различных инициаторов изучена обстоятельно [1, 2), исследования же в области изучен я реакции сополимеризации стирола ограничены. Недавно п явились результаты изучения сополимеризации стирола с пропиленом в присутствии Т1С14 + Л1(С2Н5)з [c.87]

    Сделано много попыток использовать свинцовоорганические соединения в качестве катализаторов и инициаторов полимеризации непредельных соединений [96]. В литературе описано использование свинцовоорганических соединений в следующих реакциях тетраэтилсвинец использовался в качестве инициатора полимеризации этилена [97—100], пропилена [100, 101], винилхлорида [102, 103], винилацетата, метилметакрилата [103], полимеризации дегидрированных кислых смол [104], теломеризации этилена с толуолом [105] тетравинилсвинец — в полимеризации акрилонитрила [106] тетрациклогексилсвинец — в полимеризации винилацетата [107]. Сделаны попытки полимеризации олефинов на ряде свинцовоорганических соединений [108]. Соединения типа R4Pb использовались в качестве катализаторов получения полиэфиров 1109]. Пропилен полимеризовался на комплексах А(МН К"К" ),где А —Rb, К М —РЬ [ПО]. Полимеризация 1-нитропропилеНа [c.535]

    Этилен легко сополимеризуется со многими ненасыщенными соединениями при тех давлениях и температурах, при которых он полимеризуется раздельно [30]. Вторыми компонентами при сополимеризации могут быть виниловые соединения, которые сами способны полимеризоваться с образованием высоко-полимеров, например стирол, метилметакрилат, винилацетат а также такие вещества, которые при свободнорадикальной полимеризации образуют только низкомолекулярные полимеры, как например пропилен, и, наконец, вещества, не способные к раздельной полимеризации примерами соединений последнего класса могут служить окись углерода 131] и малеиновый ангидрид [32]. Второй компонент можно просто загружать в реакционный сосуд вместе с этиленом и инициатором, но, поскольку это может привести к образованию двухфазной системы, в которой полимеризация будет протекать раздельно в чистом газообразном этилене и в жидкой фазе, состоящей главным образом из второго компонента, иногда удобно прибавлять третий, инертный компонент последний служит растворителем обоих мономеров, что обеспечивает более равномерную полимеризацию. [c.57]

    Изопрен полимеризуется в присутствии катионных катализаторов легче, чем бутадиен, однако в поведении обоих мономеров наблюдается много общего. Так, чистый изопрен под действием хлористого алюминия полимеризуется с трудом [9], тогда как в хлорированных растворителях полимеризация происходит быстро. Подобным же образом с хлорным оловом в качестве катализатора чистый изопрен полимеризуется только при температурах выше 0°, в то время как в хлористом этиле быстрая полимеризация происходит при —80° [10]. В отличие от этого бутадиен в хлористом этиле может быть заполимеризован с этим катализатором только при значительно более высоких температурах (около 20°) [11]. Активность хлористого алюминия сильно возрастает, если он присутствует в виде растворимого комплекса. В качестве комплексообразующих реагентов использовались пентен-2, триметилэтилен, нитробензол и этилацетат [12] эти соединения вызывают увеличение концентрации инициатора и могут действовать как сокатализаторы. Считают, что первый из них участвует в полимеризации, увеличивая количество действующего катализатора, что приводит к увеличению скорости полимеризации и уменьшению молекулярного веса. Однако нет веского доказательства того, что олефин не сополимеризуется с изопреном, хотя он определенно сополимеризуется с пропиленом [13] и, вероятно, с триметилэтиленом [14] влияние этих соединений следовало бы исследовать заново. Было найдено, что алкилалюмннийгалогеннды полимеризуют изопрен [15] (а также бутадиен и диметилбутадиен) только в присутствии хлористого водорода или воды в качестве сокатализаторов. Действие алкил-алюмннийгалогенидов, по-видимому, в качестве катионных катализаторов представляет интерес, так как они могут также действовать как анионные инициаторы путем реакции по связи алюминий — углерод (см. гл. 3, разд. VI). [c.301]


Смотреть страницы где упоминается термин Пропилен инициаторы: [c.161]    [c.161]    [c.238]    [c.370]    [c.218]    [c.583]    [c.347]    [c.271]    [c.229]    [c.122]    [c.9]    [c.139]    [c.227]    [c.14]    [c.347]    [c.583]    [c.204]    [c.208]    [c.193]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.239 , c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Инициаторы



© 2024 chem21.info Реклама на сайте