Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутан образование

    Гринсфельдер, Воге и Гуд [37] при изучении каталитического крекинга отметили, что ири этом образуется относительно большое количество Сд- и С -углеводородов. Они рассматривали этот факт как некоторое подтверждение теории механизма образования ионов карбония при данном процессе. При крекинге парафинов от октана до гептадекана самыми легкими продуктами оказались изобутан и бутан [38], а при промышленном крекинге газойлей при помощи хлористого алюминия с целью получения бензина по данным многих исследователей газ состоит преимущественно из бутана (по-видимому, главным образом изобутана). [c.96]


    Дегидрирование бутанов обычно производится последовательно. Сначала дегидрируется я-бутан с образованием к-бутенов (1- и 2-бутены), которые затем отделяются от к-бутана посредством экстракцимпюй перогонки, Второй ступенью является дегидрирование очищенных и-бутенов до 1,3-бутадиена. Концентрат, содержащий углеводороды С4, полученный при каталитическом дегидрировании и-бутана, в основном состоит из смеси 1-бутена, н-бутана и 2-бутенов, По значениям относительной летучести и минимальному числу теоретических тарелок, приведенным в табл. 13,. видно, что наиболее сложным является разделение н-бутана и низкокипящего изомера 2-бутена, Из приведенной в табл. 14 величины требуемого числа теоретических тарелок видно, что практически трудно произвести полное разделение этой смеси. Однако, используя комбинацию фракционной и экстракционной перегонок в присутствии растворителя, такое разделение возможно, В табл. 15 приведены значения летучести углеводородов С4 относительно 1,3-бутадиена в присутствии фурфурола, содержащего 4% воды. Путем фракционной перегонки на аппаратуре с большой разделительной способностью можно отделить 1-бутен от н-бутана и 2-бутенов, Затем к-бутан можно отделить от 2-бутенов посредством экстракционной перегонки. [c.111]

    Образование тиофена из бутана и серы протекает в несколько стадий. Считают, что вначале сера дегидрирует бутан в дивинил, который затем реагирует с серой, замыкая цикл и давая тиофен [38]. При побочных реакциях получаются сероуглерод и продукты с большим содержанием серы. [c.506]

    Индуцированное хлорирование с замещением атомов водорода. При хлорировании олефина одновременно с реакцией присоединения происходит замещение водорода хлором в продукте присоединения хлора. Поскольку в отсутствии олефина дихлориды не хлорируются с замещением атома водорода хлором, то реакция замещения рассматривается как индуцированная реакция. Индуцированная реакция хлорирования ин-гибитируется кислородом, а следовательно, очевидно, развивается как цепная реакция. При хлорировании смеси парафина и олефина хлор, присоединяется к олефину и одновременно водород замещается хлором у парафина. Реакция изучалась для пропан-пропиленовой и бутан-бутиленовой смесей. Газообразные олефины в темноте при температуре ниже 150° реагируют с хлором лишь медленно или совсем не реагируют, но они взаимодействуют энергично в присутствии какой-либо жидкой фазы. Смеси олефинов и парафинов при этих условиях реагируют быстро с образованием как продуктов присоединения, так и замещения [9]. Энергия, необходимая для реакции замещения, возможно получается за счет сильно экзотермичпой реакции присоединения. [c.63]


    Гексаны. Три из пяти изомеров гексана изомеризуются в прису>-ствии серной кислоты, тогда как н-гексан и 2,2-диметилбутан не изив-няются. Между 2- и 3-метилпентанами быстро устанавливается равновесие. Энергетический барьер между этой парой изомеров и 2,3-диметил-бутаном, который представляет более высокую степень разветвленности, достаточно велик, чтобы препятствовать образованию сколько-нибудь значительных количеств последнего за сравнительно короткий промежуток времени. Направления реакции показаны на схеме 2. [c.35]

    Нет никакого количественного правила для предугадывания точек плавления чистых углеводородов однако качественно это можно сделать точка плавления имеет тенденцию к увеличению вместе с ростом молекулярного веса и с увеличением симметрии молекулы. Точки плавления нормальных парафинов представлены в табл. 111-7. Эти значения хорошо согласуются с данными для низших кристаллических парафинов, когда вещества сравниваются на основе молекулярного веса этот факт является лучшим доказательством химического строения макрокристаллических нефтяных парафинов. Влияние симметрии намного превосходит влияние молекулярного веса. Если добавить боковые цепи к нормальным парафинам, то разветвленные парафины обычно кипят намного ниже, чем нормальные парафины с самой длинной цепью в молекуле. Встречаются, однако, исключения, когда замещение ведет к образованию компактной очень симметричной молекулы например, 2,2-диметилпропан плавится при —20° С, в то время как и-пентан плавится при —130° С, и 2,2,3,3-тетраметил бутан плавится при 104° С, а п-октан плавится при —57° С. Подобные количественные правила применимы и для циклических соединений. [c.192]

    Другие наблюдаемые явления, нанример, изомеризация с образованием разветвленных цепей, получение ароматических углеводородов и др., вызваны вторичными реакциями, которые связаны с действием катализаторов на олефины [247, 249—251]. При 500° С парафины от Сд до а также твердый парафин (приблизительно С24) расщепляются в присутствии циркониево-алюмосиликатного катализатора в 5—60 раз быстрее, чем без катализатора при той же температуре. Хотя пропан, н-бутан и изобутан крекируются над катализатором несколько быстрее, чем термически, влияние катализатора проявляется достаточно сильно лишь в том случае, когда сырьем служат парафины g и выше. [c.327]

    Ввиду того, что выходы в этих реакциях низкие, многие исследователи избегали их применения. Однако выходы алкилбензолов часто были не столь низкими, как можно было ожргдать на основании возможности одновременного образования трех продуктов конденсации, а также и другие побочных продуктов. Получение больших количеств алкилбензолов может быть объяснено тем, что реакция, вероятно, протекает с промежуточным образованием фенилнатрия, который легко реагирует е алифатическим галогенидом и труднее с ароматическим галогенидом. Все же реакция Вюрца-Фиттига может быть рекомендована для получения чистого алкилбензола, так как побочные продукты обычно легко отделяются. Например, при реакции бромистого этила и бромбензола образуются 7 -бутан и дифенил в качестве побочных продуктов, оба они очень легко отделяются от этилбензола перегонкой. Этот метод дает лучшие выходы при приготовлении к-алкилбензолов. В большом масштабе 151 реакция Вюрца-Фиттига была применена прп приготовлении н-де- [c.486]

    Правда, для н-гептана чистая реакция изомеризации протекает в очень малой степени в первую очередь наблюдается крекинг с образованием продуктов меньшего молекулярного веса [2]. При изомеризации н-пентана получают уже значительно лучшие выходы, тогда как н-бутан может быть переведен в изобутан практически без потерь при крекинге. [c.513]

    Адсорбцию и дейтерообмен метана и этана, реакции гидрогенолиза этана, гидрогенолиза и изомеризации бутанов и некоторых углеводородов состава Сг исследовали также в присутствии черней Ки, КН и 1г [43]. Более высокую каталитическую активность Ки, КЬ и 1г в реакции гидрогенолиза по сравнению с активностью Р(1, Р1, Со или N1 объясняли легкостью образования прочно связанных (многоцентровая адсорбция) поверхностных частиц, ответственных за гидрогенолиз. Предполагается, что начальная стадия быстрого многократного разрыва С—С-связей молекулы углеводорода сопровождается медленной десорбцией продуктов реакции, которая, по-видимому, и является лимитирующей стадией гидрогенолиза на Ки-, КЬ- и 1г-катализаторах. [c.96]

    Поведение к-бутана и изобутана аналогично реакциям пропана в том смысле, что они слишком быстро дают вторичные и третичные продукты реакции, чтобы можно было изучать начальную стадию разложения. Это имеет место при всех температурах свыше 1000° С, т. е. в тех случаях, когда ацетилен является основным продуктом. Отношение К/К для реакций образования ацетилена из пропилена или этилена примерно то же, что и при пиролизе пропана это указывает на то, что природа исходного реагента не имеет особенно большого влияния на скорость образования ацетилена, если исходный реагент является углеводородом, содержащим 3 или более атома углерода. В связи с этим получение ацетилена пз пропана и бутанов будет рассматриваться скорее с точки зрения выхода ацетилена, чем расхода исходного сырья. [c.63]


    Дейтерообмен. Результаты опытов [11], в которых происходил обмен дейтерия из бромистого дейтерия с атомами водорода бутанов при изомеризации в присутствии бромистого алюминия, подтвердили механизм цепной реакции с образованием иона карбония. Предполагается, что обмен происходит в то время, когда бутаны находятся в виде соответствующих ионов карбония. При. тщательной очистке от олефинов обмен происходил в ничтожно малой степени. [c.19]

    Исследовалось также влияние времени реакции и промоторов. И здесь наблюдались побочные реакции, приводившие к образованию некоторого количества бутанов и веществ, кипящих выше пентанов. Последующие исследователи показали, что эти побочные реакции можно затормозить, если применять водород или некоторые органические добавки. [c.23]

    Существуют важные доказательства, подтверждающие протекание диспропорционирования парафинов через механизм образования иона карбония. Последний включает образование промежуточной структуры, состоящей из двух молекул парафина [16, 71], с последующей диссоциацией промежуточного соединения на два новых осколка, один из которых содержит большее, а другой меньшее число атомов углерода, чем молекула исходного парафина. Одно из возможных направлений образования бутанов и гексанов из н-пентана в общих чертах представлено уравнениями (14—23). Для простоты анион опущен во всех уравнениях, кроме первого  [c.26]

    В табл. П-13 приведено расчетное равновесие между -бутаном, м-бутенами и 1,3-бутадиеном при различных температурах и 1,0 и 0,167 атмосферах давления. Из-за сопровождающих дегидрирование реакций крекинга образуется некоторое количество углерода, которое необходимо периодически удалять с катализатора. Это производится при помощи выжигания воздухом. Сообщают, что образование кокса увеличивается с молекулярным весом исходных олефинов, но данные табл. П-14 наводят на мысль, что и время контакта играет важную роль. Эти цифры были получены в опытах нри давлении 0,25 ати над катализатором, содержащим 4% хрома на алюминии. [c.101]

    Ожиженная бутан-бутеновая фракция, содержавшая 19,3 % изобутилена и 28,6% м-бутилена, полимеризовалась при 165° и давлении 45 кг/см в присутствии катализаторов крекинга на силикатной основе [67] при объемной часовой скорости жидкости от 7 до 8 с образованием от 36 до 52 % вес. полимера в расчете на взятый бутилен. Эти синтетические катализаторы имели состав окись кремния — окись алюминия, окись кремния — окись циркония, окись кремния — окись алюминия— окись циркония и окись кремния — окись алюминия — окись тория, в которых 100 молей окиси кремния были смешаны соответственно с И молями окиси алюминия, 50 окиси циркония, 2 окиси алюминия и 12 окиси циркония, 5 окиси алюминия и 0,5 окиси тория. [c.204]

    Необходимо также учитывать образование в процессе каталитического крекинга до 10% бутан-бутиленовой фракции, которая является сырьем для получения МТБЭ - ценного компонента бензина АИ-93. [c.174]

    Газ с повышенным содержанием окиси углерода получают при ведении процесса на никелевом катализаторе при температуре 900° С. объемной скорости 200 ч , отношении углекислота пропан-бутан, равном 3,7. Углекислота препятствует развитию реакций крекинга с образованием кокса [c.128]

    Эти скорости зависят также от природы катализатора. Например, они заметно различаются в присутствии платинового или палладиевого катализаторов. Соотношение между скоростями, установленное для чистых углеводородов, не сохраняется прп гидрировании их смесей. Поэтому, несмотря на то, что скорости гидрирования чистого бутадиена в бутен и чистого бутена в бутан практически являются теми же, в смеси этих соединений гидрирование бутадиена (с образованием бутена) протекает намного быстрее. Возможно, это объясняется большей величиной коэффициента хемосорбции бутадиена. [c.240]

    Стиси и Фокине (139) применили комбинированный метод при изучении ценного механизма реакции крекинга нормальнего бутана. Они вызывали в нормальном бутане образование реакционных цепей нри низких температурах путем добавки окиси этилена и уничтожали их окисью азота. Преимущество этого комбинированного метода заключается в том, что в этом случае разложение бутана происходит исключительно но цепному механизму. Таким образом можно со всей онре-деленностью установить, насколько полно окись азота в состоянии подавлять образование реакционных ценей. [c.38]

    Если реакция останавливается на стадии димеризации (как это имеет место при действии натрия на стирол в спиртовом растворе), то получается 1,4-дифенил)бутан, образование которого нельзя представить лначе, как в результате димеризации стирола по р-углеродным атомам (Р, р). Если же полимеризация протекает дальше — с образованием полистиролов — то в них преобладающим расположением молекул является расположение а, р. [c.304]

    Удельное значение протекающих одновременно реакций крекинга а дегидрирования зависит в первую очередь от числа атомов С в исходном материале. В то время как этан при высоком нагреве превращается практик чески только в этилен и водород и, следовательно, здесь в основном идет реакция термического дегидрирования, при нагреве пропана уже большее значение имеет реакция крекинга с образованием этилена и метана. При нагреве бутана до высокой температуры образуется совсем немного бутена. Бутан расщепляется главным образом на этилен и этан или, соответственно на пронен и метан. Изобутан, напротив, примерно на 50% превращается в изобутен. [c.47]

    Замечание к уравнению 1. При температуре нитрования 425° и малом времени реакции (порядка секунды или доли секунды), например, н-бутан по Ф. Фрею и Хзппу [82] распадается только на 0,0002% с образованием радикалов. Таким образом, для образования больших количеств свободных радикалов, чем может образоваться по условиям равновесия, необходимо воздействие других факторов, кроме пиролиза. [c.283]

    Однако квантовые выходы были во всех случаях меньше единицы. Лучше всего эта реакция протекает с высшими парафиновыми углеводородами. Третичные атомы водорода реагируют наиболее легко, первичные наиболее трудно. При реакции двуокиси серы с пропаном и н-бутаном установлено образование двух изомерных сульфиновых кислот, причем в случае бутана преимущественно получается сульфи-новая кислота с группой — ЗОаН у вторичного атома углерода. Олефины вступают в эту реакцию гораздо труднее и тормозят превращение насыщенных углеводородов. [c.505]

    Реакция гидрогенолиза в присутствии металлических катализа торов, как правило, сопровождается скелетной изомеризацией исходных углеводородов. Скелетная изомеризация углеводородов состава Сл— s, проходящая, по-видимому, через промежуточное образование 1,3-диадсорбированного соединения, обсуждается в литературе достаточно широко. Исследованы изомеризация бутанов и неопентана на пленках Pt [16, 21, 59, 60], превращения неопентана на нанесенных Pt-катализаторах и черни [34, 61]. Для изомеризации н-бутана и изобутана постулируются [21] поверхностные [c.97]

    Механизму превращений вторичных аминов в присутствии благородных металлов VIII группы посвящены работы [39, 54]. Сходные превращения в присутствии Р1, Pd, Оз, НЬ и 1г, отложенных на активированном угле, претерпевает дизтиловый эфир [40]. Состав катализата этого эфира был достаточно сложен, однако в нем были идентифицированы тетрагидрофуран, бутан и пропан. Образование бутана и пропана логичнее всего представить также через стадию образования тетрагидрофу-рана  [c.197]

    При риформинге происходит изменение химического состава исходного сырья. В результате образования углеводородов с более низким молекулярным весом получающийся продукт обогащен низкокипящими фракциями сравнительно с исходным сырьем. Значительное количество метановых углеводородов исходной фракции превращается в олефины, а нафтены дегидрируются до ароматических углеводородов. Такое изменение химического состава имеет большое значение и во многом обусловливает высокие октановые числа риформинг-бензинов. Кроме этого, термический риформинг дает значительные выходы пропан-нропиленовой и бутан-бутиленовой фракции. Из последних можно полимеризацией получить высокооктановый полимерный бензин, который является отличной добавкой для улучшения качества других бензинов. [c.45]

    Как показывает схема, в данном случае обнаруживается заметная тенденция к образованию крупных осколков молекулы, что свидетельствует обычно о наличии механизма с участием иона карбония. Однако предполагается, что реакция проходит несколько своеобразно из-за быстрого соединения образовавшихся ионов с водородом, что исключает вторичный распад продукта. Хорошее совпадение суммарных выходов метана и гексана, этана и пентанов и, наконец, пропапа и бутанов, указывает на то, что образовавшиеся осколки молекул не подвергаются даль-лейшей деструктивной гидрогенизации. [c.180]

    Изомеризация метилциклопентана и циклогексана в присутствии хлористого или бромистого алюминия и в отсутствии других продюторов была доведена до конца введением небольшого количества воды [55]. Как и у бутанов (см. выше), обнаружено образование гидроксилалюми-нийбромида с последующей реакцией его с углеводородом, в результате чего образуется инициирующий цепь галоидуглеводород (47) [c.45]

    В случае бутанов при температурах 480—710° изобутан не реагирует с образованием тиофена это объяснялось первоначальным образованием лзобутилена, который при этих условиях дает смолу [12]. [c.90]

    Как описано в ])яде патентов Рида [76], весьма сходные результаты получены при пропускании хлора и двуокиси серы через углеводород. Этот метод обычно известен под названием реакция Рида . Реакция нашла некоторое ограниченное промышленное применение в США и Германии для производства алкилсульфокпслот, легко получаемых нри гидролизе алкилсульфонилхлоридов [56, 7]. При производстве но этому методу сульфонатов (применяемых как детергенты и смачивающие агенты) из разнообразных парафинов предпочтение отдавали углеводородам, содержащим в молекуле от 12 до 16 атомов углерода. Получены также сульфонаты из парафина и более высокоплавкого парафина, получаемого но процессу Фишера—Тропша [7]. В парафинах с длинными цепями сульфонилхлорид может замещаться, но-видимому, в любое положение. Из простых парафинов пропан дает приблизительно равные выходы пропан-1-сульфонил-хлорида и вторичного производного. к-Бутан дает приблизите.тьно 1/д бутан-1-сульфонилхлорида и бутан-2-сульфонилхлорида изобутан дает только первичное производное. По данным [28] нри использовании в качестве катализатора азосоединения реакция протекает при температурах от Одо 75° без света. Имеются сведения, что добавка фосфорной кислоты [23, 26] в реакционную смесь нейтрализует вредное влияние загрязнений железа. Промышленному применению процесса препятствуют нежелательное образование хлоридов и другие факторы. [c.92]

    В этом опыте соотношение изобутилена к н-бутилену менялось от 1,7 моля в первые 24 часа опыта до 2,1 моля в третьем периоде за то же время, а скорость образования полимера менялась от 1,5 до 0,6 г на 1 г катализатора. В присутствии этого катализатора при 250—300° и давлении 50 кг/см полимеризовалось некоторое количество пропилена из пропан-нропиленовой фракции, содержавшей 18 % пропилена. В этнх условиях активность катализатора снижалась значительно быстрее, чем при использовании бутан-бутеновой смеси. Полимер, полученный из пропилена, содержал около 10% димеров и около 60 % тримеров. [c.204]

    Аг, Кг, Хе, СН4, С1. СН,,С1, СНС1..), НзЗ, N,0, н-бутан, пропан, этилен, ацетилен 3 1 8 1 17 1 Теплота образования равна приблизительно 14—15 ккал моль [c.91]

    Необходимо отметить, что основным напршлением реакций гидрокрекинга является превращение н-гексана в пропан и бутан, реакция с образованием метана практически не имеет места. [c.29]

    Разрыв колец Сз- и С4-нафтенов при образовании изомерных олефинов обычно следует за полимеризацией. Изопропилцикло-бутан, однако, превращается в цис и трансЛ,2- и 1,3-диметил-циклопентаны и метилциклогексан. Циклопентан не изомеризуется. Метил и диметилциклогексаны являются продуктами изо- [c.122]

    При 400° С над катализатором AI2O3 — ZrO — ЗЮг -бутены претерпевают изомеризацию с образованием изобутилена, расщепление, полимеризацию и перенос водорода и дают к-бутан и изобутан, причем реакции насыщения идут в большей степени по [c.329]

    Все, что обеспечивает более быстрое и полное взаимодействие воздуха с топливом, ведет к уменьшению дымообразования. К этому выводу приводит изучение образования и уничтожения копоти в пламени бунзеновской горелки [104], в которой мелко дисперсная копоть лучше сгорает. Дополнительная подача воздуха мало действует на маленькое пламя и оказывает значительное влияние на сильное. Бутан при горении дает большое коптящее нламя, если поток газов струйный, но нужное пламя может быть получено нри увеличении аэрации, достигаемой при подаче газов в турбулентном потоке. [c.482]

    Бутан, пентан и изопентан хлорируют в аналогичных пропану условиях, но при более низких температурах. С увеличением молекулярного веса могут протекать реакции пиролиза и дегалои-дирования с образованием значительного количества олефинов. [c.272]


Смотреть страницы где упоминается термин Бутан образование: [c.447]    [c.48]    [c.327]    [c.281]    [c.306]    [c.206]    [c.218]    [c.92]    [c.144]    [c.52]   
Основные начала органической химии том 1 (1963) -- [ c.408 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.359 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен, полимеризация бутан, образование

Бутан

Бутан Бутан

Бутан образование при облучении полиэтилена

Бутан образование при синтезе дивинила

Бутан теплота образования

Бутан термическое образование дихлорбутана при хлорировании

Бутан термическое хлорирование образование механизм пиролиза его

Бутан термическое хлорирование образование с серой

Бутан энтальпия образования

Бутан, термическое хлорирование, образование монохлорбутана при этом

Бутан, термическое хлорирование, образование монохлорбутана при этом норм. Бутан

Бутан, термическое хлорирование, образование монохлорбутана при этом хлорирование

Бутанал

Бутилен образование от бутана

Бутилены образование при пиролизе бутанов

Водород, образование при пиролизе бутана

Водород, образование при пиролизе бутана атомов ртути

Водород, образование при пиролизе бутана в вольтовой дуге

Водород, образование при пиролизе бутана газойля

Водород, образование при пиролизе бутана действием вольтовой дуги

Водород, образование при пиролизе бутана дуге

Водород, образование при пиролизе бутана изопрена

Водород, образование при пиролизе бутана олефинов

Водород, образование при пиролизе бутана парафина

Водород, образование при пиролизе бутана пропан-бутановой смеси

Водород, образование при пиролизе бутана пропана

Водород, образование при пиролизе бутана пчелиного воска

Водород, образование при пиролизе бутана углеводородов

Водород, образование при пиролизе бутана углерода

Водород, образование при пиролизе бутана циклогексанов

Водород, образование при пиролизе бутана циклопентанов

Водород, образование при пиролизе бутана этана

Водород, образование при пиролизе бутана этилена

Гексадиены, образование их при пиролизе бутана

Метилциклопентадиен, образование при пиролизе бутанов

Образование ацетона при жидкофазном окислении бутана

Образование бутана и бутадиена при дегидрировании смеси бутан — бутен на алюмохромовом катализаторе

Образование метилэтилкетона при жидкофазном окислении бутана

Образование пропионовой кислоты при жидкофазном окислении бутана

Пентены образование при пиролизе бутан

Углерод, образование при пиролизе в преобразованном бутане



© 2025 chem21.info Реклама на сайте