Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение селективность Селективность

    Возможность в одном и том же растворе качественно и количественно определять несколько различных элементов, не прибегая к их химическому разделению (высокая селективность метода). [c.455]

    После подстановки уравнений (3.85) в (3.84) и (3.21) в (3.83) получим температурную зависимость сорбционного и диффузионного факторов разделения и селективности мембраны в виде соотношений [c.108]


    В уравнениях (6.22) и (6.23)—показатель степени п равен порядковому номеру ступени разделения. Число ступеней в каскаде можно определить и с использованием диаграммы Мак-Кеба— Тиля (рис. 6.7). На рисунке 6.7 представлены графически кинетическая и рабочая линии простого каскада. Видно, что с уменьшением селективности число необходимых (для заданной степени разделения) ступеней возрастает при ф = 1 рабочая линия совпадает с диагональю диаграммы Мак-Кеба — Тиля, а кинетическая линия является практически прямой и расположена очень близко к рабочей (рис. 6.7,6). [c.206]

    Как видно из рис. IV-31, зависимость (IV.37) может быть использована для расчета <р при разделении растворов электролитов и с добавками ПАВ, причем константа D в уравнении (IV.37) остается неизменной при внесении в раствор добавки ПАВ. Это позволяет использовать данную зависимость для предсказания влияния добавок ПАВ на селективность разделения растворов солей. [c.214]

    За последние годы расширилась область практического применения мембранных методов разделения жидких смесей, увеличились производительности установок, усложнились их схемы. Так, для опреснения соленых вод применяют двухступенчатые установки производительностью в несколько тысяч кубических метров в сутки (см. стр. 298). В некоторых случаях может оказаться рациональной схема, состоящая из большего числа ступеней, особенно при наличии на линии высокого давления рекуперативной турбины (см. стр. 301). Методы расчета подобных систем (потоков по ступеням, их состава, необходимой поверхности мембран и их селективности и т. п.) достаточно сложны и пока еще находятся в стадии разработки. Поэтому в данной главе рассмотрены принципы расчета только наиболее распространенных вариантов двухступенчатых схем. [c.223]

    Проблема исиользования комплексов с разделяющими агентами состоит не столько в проведении самого процесса разделения, сколько в подборе такого носителя, который бы отвечал необходимым требованиям. Носитель должен обладать прежде всего следующими свойствами изменять коэффициенты относительной летучести смеси (отдельных компонентов) в нужном направлении (обладать достаточно высокой поглотительной способностью и селективностью — в случае абсорбции, обладать необходимой зоной расслаивания и селективной растворимостью — в случае экстракции) легко регенерироваться из смесей с компонентами разделяемой системы быть безопасным в обращении, доступным и дешевым быть устойчивым (к разложению, осмолению и т. д.), инертным по отношению к компонентам разделяемой смеси, не оказывать коррозионного воздействия на аппаратуру. [c.91]


    В практической работе используется еще ряд характеристик, таких, как относительный удерживаемый объем, коэффициенты разделения и селективности, и т. д. [c.47]

    В лабораторной практике в качестве селективных растворителей чаще других применяют жидкий сернистый ангидрид (один и вместе с бензолом), уксусную кислоту, ацетон, нитробензол, фенол, анилин и др. Так же как и в методе адсорбции и кристаллизации разделение при селективной экстракции — неполное, и для повышения четкости разделения требуется многократное повторение операции селективной экстракции. [c.177]

    В гл. I рассматривался вариант газовой хроматографии, в основе которого лежит селективная адсорбция компонентов разделяемой смеси твердой неподвижной фазой — адсорбентом. В распределительной газовой хроматографии решающим фактором разделения является селективная абсорбция компонентов смеси неподвижной жидкой фазой — абсорбентом. Для локализации неподвижной >йид-кой фазы и придания ей достаточной поверхности ее наносят на зерна твердого носителя, которым заполняется колонка (насадоч-ная колонка), или же на внутренние стенки тонких капилляров (капиллярная колонка). [c.170]

    По [9] селективность неподвижной фазы определяется изменением относительного удерживаемого объема вещества разделяемой смеси по сравнению с относительным давлением пара этих веществ в чистом состоянии и количественно выражается величиной относительного коэффициента активности компонентов разделяемой смеси. Величина селективности также может характеризоваться коэффициентом селективности (см. ниже). Разделительная способность хроматографической колонки определяется как ее эффективностью, так и селективностью сорбента. На рис. 14 приведена иллюстрация зависимости степени разделения смеси двух веществ от эффективности колонки и селективности сорбента. Как видно из приведенных хроматограмм, достаточно полное разделение можно осущест- [c.45]

    Селективность сорбента нлн жидкой фазы нео()ходима для разделения данной конкретной смеси и обеспечивается надлежащим выбором нх, который делается на основе анализа природы сил межмолекулярного взаимодействия между молекулами неподвижной фазы и разделяемых веществ, а также на основе чисто эмпирических проб разделения на колонках одних и тех же размеров, но с разными сорбентами. Выбирают тот сорбент, который дает на хроматограмме наибольшее количество пиков с наиболее равномерным распределением их по времени и обеспечивает подходящее время аналнза. [c.128]

    Рассмотрим влияние отдельных параметров процесса разделения на селективность и эффективность хроматографической колонки. [c.129]

    Примесь воды в неполярном или слабополярном элюенте приводит к уменьшению удерживания и влияет на селективность разделения на полярных адсорбентах, в частности, на силикагеле с гидроксилированной поверхностью. Для получения воспроизводимых результатов необходимо поддерживать постоянную концентрацию воды в элюенте. Вместе с тем, изменяя концентрацию воды в элюенте, можно регулировать удерживание и селективность, а экранированием особо активных мест поверхности приблизить начальную часть изотермы адсорбции к линейной, т. е. получать симметричные пики при небольших дозах. Однако на практике трудно поддерживать постоянную концентрацию воды в элюенте, так как, во-первых, практически все элюенты, даже алканы, в той или иной мере содержат примесь воды, содержание которой изменяется в зависимости от влажности воздуха и, во-вторых, изменения температуры и состава элюента приводят [c.297]

    Несмотря на то что увеличение количества взятого для анализа вещества приводит к уменьшению числа теоретических тарелок, и следовательно, к ухудшению разделения, возрастание селективности при увеличении количества жидкой фазы позволяет одновременно увеличивать и количество наносимой для разделения смеси. Очевидно, что оптимальное количество жидкой фазы должно устанавливаться в каждом отдельном случае в зависимости от конкретных условий опыта и поставленной задачи. [c.103]

    При использовании импульсного метода необходимо учитывать некоторые специфические особенности реакций в хроматографических колонках. Так, если в колонке происходит обратимая реакция Ач В + С, то в силу различия скоростей движения А, В и С по колонке в ней произойдет их разделение, препятствующее обратной реакции, и процесс может пройти в одном направлении, давать выход много выше равновесного. Эффекты подобного рода обычно препятствуют также побочным реакциям, в результате для реакций в колонке может быть получена селективность более высокая, нежели в обычных условиях. В случае гетерогенно-каталитических процессов иногда становится возможным избежать влияние продуктов, многие из которых могут являться каталитическими ядами. Эти и другие различия реакций в классических условиях и в хроматографических колонках следует учитывать при сопоставлении соответствующих результатов. При правильном учете особенностей реакций в импульсном хроматографическом режиме удается получить хорошее согласие кинетических параметров, полученных различными методами. [c.375]


    Специфичности реакций обнаружения можно добиться также путем предварительного отделения всех мешающих компонентов. Для этой цели разработан ряд схем, работа по которым связана с систематическим разделением компонентов. Это систематический анализ. Вначале с помощью подходящих групповых реагентов выделяют отдельные группы компонентов. Потом производят разделение в рамках каждой группы и, наконец, получают растворы, в которых может находиться только по одному компоненту. Эти растворы используют для обнаружения компонентов с помощью подходящих реакций. Обычно для этой цели применяют избирательные (селективные) реагенты, которые могут взаимодействовать с ограниченным числом (2—3—5) компонентов. Так как все мешающие компоненты отделены, селективные реакции в данных условиях становятся специфическими реакциями обнаружения. Тщательное соблюдение предписаний методики систематического анализа обеспечивает получение надежных результатов даже малоопытными аналитиками. Однако этот способ анализа сравнительно длителен и трудоемок. [c.12]

    Задача разделения Селективность  [c.218]

    Селективность колонки играет большую роль в достижении хромато-графического разделения. Селективность колонки а определяется отношением приведенных времен удерживания двух пиков по следующему уравнению  [c.9]

    Селективность колонки зависит от очень многих факторов, и искусство экспериментатора в большой мере определяется умением воздействовать на селективность разделения. Для этого в руках хроматографиста находятся три очень важных фактора выбор химической природы сорбента, выбор состава растворителя и его модификаторов и учет химической структуры и свойств разделяемых компонентов. Иногда заметное влияние на селективность оказывает изменение температуры колонки, меняющее коэффициенты распределения веществ между подвижной и неподвижной фазами. [c.9]

    Опубликовано более 40 работ по определению примесей в алюминии высокой чистоты активационным методом. Анализируемый образец и эталоны облучают в ядерном реакторе потоком нейтронов 10 —нейтрон см сек и измеряют активности образующихся при этом радиоактивных изотопов с помощью сцинтилляционного у-спектрометра. Время облучения (в зависимости от определяемых примесей) от нескольких часов до нескольких недель. Большей частью предварительно разделяют примеси на группы различными методами осаждением на носителях, экстракцией, ионообменной хроматографией. Известен метод определения примесей с использованием у-спектрометрии и без химического разделения селективность метода при определении отдельных элементов достигается выбором соответствующего времени облучения и охлаждения [5951. Предложен метод активационного анализа без разрушения образца с применением Ое (Ь1)-детекторов у-излучения, обладающих высокой разрешающей способностью [1093]. [c.228]

    Как и в процессе деасфальтизации, для улучшения четкости разделения процесс селективной очистки масел целесообразно вести при высоком температурном градиенте. На установках фур — фурольной очистки масел градиент экстракции поддерживают на уровне 30 — 40 °С, а на фенольной — всего 10 — 20 °С. [c.242]

    Наименьшей ячейкой мембранного массообменного устройства является мембранный элемент, состоящий из напбрного и дренажного каналов, разделенных селективно-проницаемой перегородкой. Тип элемента определяется геометрией разделяющей поверхности (плоские, рулонные, трубчатые, волоконные) и организацией движения потоков газа (прямо-и противоточные, с перекрестным током, с рециклом разделяемой смеси и т. д.). Напорный канал элемента плоского типа образован селективно-проницаемыми стенками, ориентированными горизонтально или вертикально. В элементах трубчатого типа напорный канал ограничен внутренней поверхностью одной трубки или наружной поверхностью нескольких соседних трубок. Разделительная перегородка обычно состоит из собственно мембраны, пористой подложки и конструктивных деталей, обеспечивающих механическую прочность и жесткость. Массовые потоки в мембране и пористой подложке ориентированы по нормали к разделяющей поверхности. [c.10]

    Обсудим проблему селективности процесса в полимерных мембранах. Столь большое число факторов, влияющих на проницаемость чистых газов, очевидно, скажется на селективности процесса. При разделении газовых смесей в общем случае необходимо учитывать взаимное влияние диффузионных потоков компонентов в мембране, при этом основные сорбционные и диффузионные характеристики процесса оказываются сложной функцией состава газовой смеси. Небольшая примесь сильно-сорбируемого компонента, который отличается специфическим взаимодействием с веществом матрицы мембраны или одним из прочих компонентов смеси, может радикально изменить проницаемость всех компонентов, поэтому принцип аддитивности при определении общего потока через мембрану и оценку селективности процесса на этой основе следует проводить с большой осторожностью. Тем не менее воспользуемся указанным принципом для выявления некторых закономерностей разделения. [c.104]

    По оценке экономистов [3, 4], к 2025 г. потребность в водороде увеличится в 15—17 раз. Во многих производствах водород используют отнюдь не полностью, некоторая его часть в виде сбросных газов выводится из процессов и либо теряется совсем, либо используется в качестве низкокалорийного топлива. Рациональнее, конечно, извлекать водород из этих газов и возвращать его в процесс, однако применение для этих целей методов адсорбции, абсорбции, дистилляции, как правило, неэффективно. Более перспективным, из-за высокой водородопроницаемости и больших значений фактора разделения (селективности) по водороду в металлах и пол имерных материалах, представляется мембранный метод разделения. [c.271]

    В настоящее время экстракция и экстрактивная ректификация редко используются при разделении нефтяных фракций с целью последующего их анализа, однако широкое применение эти методы нашли в нефтепереработке и нефтехимии. Экстракцией в промышленности выделяют бензол, толуол и ксилолы из ката-лизатов риформинга бензиновых фракций [29], проводят селективную очистку масляных фракций [30], деароматизацню реактивных топлив [31]. Предлагается также"экстракционная очистка жидких нормальных алканов от примесей аренов [32, 33], выделение сульфидов [34] и т. д. [c.57]

    III. 132) выражает коэффициент разделения. Селективность зависит от многих причин. Упругая сетка матрицы сопротивляется набуханию, поэтому ионит предпочтительнее поглощает менее гидратированные ноны. Этот факт объясняет установленные для многих катионитов лиотропные ряды повышения сорбируемости. Например, однозарядные катионы образуют следующий лиотропный ряд Li+ < Na+ <С К+ < Rb+ <С s+. Повыц]ение жесткости матрицы, что достигается увеличением содержания мостикообразователя, приводит к росту селективности ионита по отиощению к нонам меньших размеров в гидратированном состоянии. [c.171]

    Эту особенность учитывают унсе при анализе смесей олефинов. Быстрое аналитическое разделение газообразных олефинов основано в некоторых методиках па использоваиии их свойства погло1цаться серной кислотой различной концентрации, в зависимости от длины п строения углеродной цепи. При этом различия в скорости поглощения настолько велики, что возможно селективное извлечение определенных олефииов из их смесей 12). [c.432]

    Оптимальное значение pH для экстракции пиридилазопафтолата никеля находится в интервале 4,0—8,0. Условия экстракционного разделения и селективного экстракционно-фотометрического определения N1 выполняются при pH = 4,06,0 — для С( , 4,0 — для 1п и 4,0-н 7,0 —для Мп. Поэтому ионы никеля можно определять с помощью ПАН в присутствии соизмеримых количеств Сс], Мп и 2п, экстрагируя хелатный комплекс хлороформом при pH 4,0. При этом отпадает необходимость предварительного отделения или маскирования Сс1, Мп и 2п. [c.221]

    В табл. VIII 4 приведены значения разностей индексов Ковача для различных жидких фаз. Эти данные получены при температуре 100°С, сорбент хромосорб W и 20% неподвижной фазы. Из табл. VIII.4 следует, что по значению коэффициентов Роршнейде-ра можно подобрать наиболее селективные фазы для разделения конкретной смеси или, при необходимости, произвести замену одной фазы другой. Например, так как константы Роршнейдера для жидких фаз SE-30 и апиезона L близки, то на этих фазах можно получить сходное разделение. Суммарная величина Д/= [c.207]

    Важной прикладной задачей в лазерохимии является разделение изотопов. Молекулы, различающиеся изотопическим составом атомов, имеют близкие физические свойства и зачастую близки по своей реакционной способности (молекулы, содержащие О вместо Н, составляют исключение). Поэтому разделение таких молекул — сложная проблема. Лазерохимия предлагает эффективный способ для разделения изотопов. Дело в том, что изотопические молекулы различаются спектрально, и изотопический сдвиг спектральных линий в большинстве случаев достаточен для того, чтобы, используя монохроматическое лазерное излучение, осуществить селективное возбуждение одного из изотопов. Разделение изотопов достигается использованием различия в физикохимических свойствах между возбужденными молекулами, в частности их разной химической активности. Например, при облучении смеси НзР + HзF -Н Вга светом с длиной волны 1035,47 см происходит селективное возбуждение молекул СНзР, которые вступают в реакцию с атомами брома  [c.111]

    В то время как в промышленности уже в большом масштабе используют азеотропную и экстрактивную ректификацию, чтобы удешевить процессы, в которых обычное ректификационное разделение связано со значительными трудностями, в лабораториях до сих пор чаш е применяют другие методы — например, распределение, экстракцию или хроматографию — для разделения близкокипяицих смесей, неидеальных смесей без особых точек и азеотронных смесей. Ниже будет показано, что при подобных сложных задачах разделения методы селективной перегонки, такие, как азеотропная и экстрактивная ректификация, обладают существенными преимуществами. [c.332]

    Широкую область применения в газохроматографическом анализе нашла адсорбция определенных классов веш,еств на колонках с молекулярными ситами. Эти колонки помещают перед колонкой, служащей для соб-йтвенно газохроматографического разделения. Селективная адсорбция н-нарафннов была впервые применена для газохроматографического анализа высших углеводородов в работе Бреннера и Коутса (1958). Эти авторы установили, что и-парафины Сз — С при 60 — 180" количественно задерживаются на колонках длиной 30—100 см, заполненных молекулярными ситами 5А, а ароматические углеводороды, нафтены и разветвленные углеводороды выходят из этих колонок без изменения. Сравнение результатов анализа на обычной колонке и на предварительно включенных колонках с молекулярными ситами позволяет выполнить не только качественную идентификацию н-углеводородов, но и их количественное определение в смесях (например, в конечных продуктах реформинга). Общее содержанпе н-углеводородов и долю отдельных парафинов можно определить по разности величин площади пиков на обеих хроматограммах. [c.242]

    Каменноугольный пек представляет сложную смесь различных органических веществ (до нескольких сот). Из них химически индентифици-рованы лишь несколько десятков [93]. Поэтому пеки характеризуют по фракционному или компонентному составу. Группы веществ в пеках, имеющих определенную молекулярную массу, растворяются в одних растворителях и не растворяются в других. В результате многочисленных работ по разделению селективным растворением пека на фрак ции в настоящее время отобраны следующие растворители петролейный эфир (гептан), бензол (толуол), пиридин (хинолин). Часть пека, растворяемая в петролейном эфире, названа -у-фракцией, или мальтенами растворимая в бензоле, нерастворимая в петролейном эфире — -фракцией, или асфальтенами часть, нерастворимую в бензрле (толуоле), а-фрак-цией, или карбоидами. В последнее время а-фракцию стали подразделять на ai-фракцию и а2-фракцию. Фракция а не растворима в пиридине (хинолине). Предполагается, что она состоит из частичек угля, попавших в смолу, частичек сажи, образовавшихся при деструкции летучих продуктов, выделяющихся из каменного угля при его нагреве, а также из высокомолекулярных органических веществ. Молекулярная масса (средняя величина) каждой фракции мальтены 400—500 асфальтены — 700-800 карбоиды - 2000. Каменноугольный пек состоит в основной своей массе из ароматических, а также из гетероциклических молекул. В пеке обнаружены соединения, имеющие гетероциклы с кислородом, азотом и серой. Элементарный состав пека, отличающийся способом получения и температурой начала размягчения, представлен ниже, % [94]  [c.150]

    Если пирометаллургия основана на химических процессах, протекающих в расплаве сырья при высоких температурах, и для разделения его компонентов используется различное их сродство к шлакообразующим, к/лслороду или к сере, то гидрометаллургия основана на извлечении соединений металлов из руд и концентратов водными растворами различных реагентов при низких температурах. При селективном действии реагентов в раствор переходят главным образом полезные компоненты пустые породы практически не растворяются в реагентах. Этим гидрометаллургия выгодно отличается от пирометаллургии, при которой переплавляется вся масса руды. Такое отличие особенно важно при переработке бедных руд, содержание полезного компонента в которых мало. [c.352]

    ЭКСТРАКЦИЯ ГАЗОВАЯ, селективное извлечение Ж]]Д-ких компонентов разл. смесей в фазу сжатого свсрх]<ритич. газа (СО2, этап, этилен и др.). Происходит благодаря резкому возрастанию р-римости этих компонентов в газе вблизи критич. точки. Процесс полностью обратим (для реэкстракции снижают давление газа, в результате чего из газового экстракта выделяется жидкая фаза) и легко управляем, т. к. даже небольшие изменения давлепия и т-ры оказывают сильное влияние на селективность и ем] ость газа как р-рителя. Примен. для извлечения н разделения жидких комнонентов, содержащихся в нефти, продуктах гидрогенизации угля и др. видах прир. топлива. Исследования в области Э. г. особенно интенсивно проводятся в капиталистич. странах с сер. 70-х гг. в связи с энергетпч. кризисом. [c.694]

    Разрешение как параметр, характеризующий разделение пиков, увеличивается по мере возрастания селективности, отражаемой ростом числители, и роста эффективности, отражаемой снижением значения знаменателя из-за уменьшения ширины пиков. Поэтому быстрый прогресс жидкостной хроматографии привел к изменению понятия жидкостная хроматография вьюокого давления — оно было заменено на жидкостную хроматографию вьюокого разрешения (при этом сокращенная запись термина на английском языке сохранилась НРЬС как наиболее правильно характеризующее направление развития современной жидкостной хроматографии). Сокращение, принятое в отечественной литературе, — ВЭЖХ, расшифровываемое как высокоэффектиная жидкостная хроматография , для современной жидкостной хроматографии несколько менее удачно, так как не учитывается важнейший фактор разделения — селективность. [c.10]

    См. также Мембранные процессы разделения селективные 1/798 3/33-57 сплошные 3/53, 36 электролизные 5/390 адерные 3/36 Менадион 1/749 3/388, 390 Менахнноны 1/749 Менделевий 3/57 1/131, 132 3/413, 957, 939 Менделеева весы 1/690 замазка 2/312 [c.645]


Смотреть страницы где упоминается термин Разделение селективность Селективность: [c.205]    [c.165]    [c.146]    [c.63]    [c.303]    [c.201]    [c.37]    [c.83]    [c.196]    [c.240]    [c.114]    [c.91]    [c.576]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение селективность



© 2024 chem21.info Реклама на сайте