Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этиленгликоль углеводороды

    Неорганические вещества обладают ограниченной растворимостью в апротонных растворителях, поэтому изучалось применение многих смесей апротонных растворителей с более полярными растворителями. В качестве примеров можно привести смеси бензол — метанол и этиленгликоль — углеводород. К сожалению, фундаментальные знания о свойствах и поведении кислот и оснований в этих системах скудны, поэтому вопрос о применимости смешанных растворителей в конкретном случае может быть решен только эмпирически. [c.292]


Рис. 6. Зависимость растворимости ароматических углеводородов в ди-этиленгликоле от числа атомов углерода в боковых цепях. Рис. 6. Зависимость <a href="/info/422160">растворимости ароматических углеводородов</a> в ди-этиленгликоле от <a href="/info/570725">числа атомов</a> углерода в боковых цепях.
    В реакциях окисления метана, этилена, метилового спирта, циклопропана и этиленгликоля активным промежуточным веществом, ответственным за разветвление, по-видимому, является формальдегид. В низкотемпературной области окисления высших углеводородов веществами, ответственными за вырожденное разветвление (как и в случае пропана), могут быть высшие альдегиды и перекиси, причем последние распадаются на радикалы. В этой области добавки формальдегида не влияют на скорость реакции или оказывают тормозящее действие. [c.222]

    Рнс. 5.11. Схема экстракции ароматических углеводородов смесью Л -метил-пирролидона и этиленгликоля  [c.289]

    В большинстве случаев применения спиртов примесь углеводородов допустима. Однако иногда, например в производстве пластификаторов, требуются спирты с минимальным содержанием углеводородов. Для очистки спиртов от углеводородов применяется азеотропная ректификация с низшими спиртами, а также экстракция этиленгликолем, диэтиленгликолем и другими полярными растворителями. Смесь спиртов, если это требуется, можно разделять кристаллизацией в селективных растворителях на предельные и непредельные. [c.36]

    На нижней части рисунка показаны результаты азеотропной перегонки смеси монобутилового эфира этиленгликоля со смесью углеводородов при 770 мм рт. ст. Азеотропная смесь содержит около 60% объемн. углеводородов. [c.247]

    Полученные ароматические углеводороды выделяются из ароматизированных фракций экстракцией этиленгликолем или диэтиленгликолем, в которых не растворяются алканы и нафтены. [c.148]

    Диэтиленгликоль был ранее наиболее распространенным экстрагентом для выделения ароматических углеводородов. Однако вследствие недостаточно высокой его селективности и малой емкости по сравнению с другими растворителями в настоящее время в качестве растворителей используют дипропиленгликоль, три- и тетра-этиленгликоль, а также их смеси. Эти экстрагенты обладают большей емкостью по отношению к ароматическим углеводородам, чем дп-этиленгликоль, и их применение позволяет интенсифицировать процесс экстракции [41, с. 319—328, 43, 59—64]. [c.56]


    Алканы практически нерастворимы в воде и сами ее не растворяют, Так, в воде при 20 °С растворяется 2,065 % (по объему) бутана. В 100 г воды при 25 °С растворяется 0,005 г гептана, а в 100 г гептана в таких же условиях растворяется 0,0151 г воды. Алканы растворяют хлор, бром, иод, некоторые соли, например фторид бора (И1), хлорид кобальта (II), хлорид никеля (II), некоторые модификации серы, фосфора, хорошо растворимы в углеводородах и их галогенпроизводных, а также в простых и сложных эфирах. Хуже растворимы в этаноле, пиридине, алифатических аминах мало растворимы в метаноле, ацетоне, фурфуроле, феноле, анилине, нитробензоле и др. Практически нерастворимы в глицерине, этиленгликоле. Как правило, растворимость алканов падает с увеличением числа полярных групп в растворителе и возрастает с увеличением длины его углеродной цепи. [c.192]

    Кроме того, для преодоления сил сцепления парафинов и остальных углеводородов масла используются специальные активаторы процесса комплексообразования к ним относятся метиловый и этиловый спирты или смеси их, ацетон, этиленгликоль, вода (в тех случаях, когда продукт или раствор его контактирует с сухим карбамидом). [c.223]

    Этиленгликоль кипит при 197°. Он полностью смешивается с водой и спиртом, но нерастворим в некоторых углеводородах. Этиленгликоль вступает во все типичные реакции, обусловленные присутствием спиртового гидроксила, которые, однако, осложняются тем, что при соседнем атоме углерода находится вторая гидроксильная группа. Например, этиленгликоль образует с альдегидами и кетонами циклические ацетали и кетали  [c.354]

    Она также уменьшается с температурой. Например, водородная связь образуется между этиленгликолем (полярная ЖФ) и неполярными молекулами бензола, содержащими неподеленные пары электронов в двойной л-связи. Энергия водородной связи (21— 42 кДж/моль). Вследствие образования водородной связи бензол сильно задерживается в колонке, а сопутствующие ему в смесях предельные и нафтеновые углеводороды проходят вперед. На этом также основан промышленный процесс выделения бензола из неароматической фракции нефти путем экстракции этиленгликолем. [c.194]

    Эта реакция явилась впоследствии общим способом получения углеводородов определенного состава и строения. В 1856 г. А. Вюрц синтезировал первый двухатомный спирт — этиленгликоль  [c.242]

    Простейший двухатомный спирт — этиленгликоль легко смешивается с водой, этиловым спиртом, ацетоном и некоторыми другими органическими веществами, но не смешивается с углеводородами и, в частности, с бензином. Наличие второй гидроксильной группы повышает плотность и температуру кипения этиленгликоля по сравнению с этиловым спиртом. Его температура кипения 197° С, а плотность 1,114 г см . Температура замерзания этиленгликоля — [c.296]

    За рубежом в качестве ингибитора чаще всего применяют диэтиленгликоль (ДЭГ), поскольку он имеет небольшое давление насыщенных паров и сравнительно мало растворим в углеводородном конденсате. В отечественной практике большее распространение получил этиленгликоль, так как он меньше растворяется в газовом конденсате. Потери гликоля от растворимости в углеводородах 0,25—0,75 л на 1000 л извлекаемого из газа конденсата и определяются в основном содержанием в конденсате ароматических углеводородов [2 ]. Если газ в процессе переработки охлаждается до низких температур, его необходимо осушать. [c.122]

    Значение продуктов, получаемых на базе окиси этилена, возрастает с каждым годом. Около 70% всей вырабатываемой окиси этилена идет на производство этиленгликоля, используемого в качестве антифриза для автотранспорта. Путем поликонденсации этиленгликоля с терефталевой кислотой получают полимеры сложных эфиров, из которых изготовляют волокно, известное под названием терилен . Этиленгликоль используется также для производства динамита и алкидных смол. Диэтилен-гликоль и триэтиленгликоль, являющиеся побочными продуктами производства этиленгликоля, применяются в качестве компонента антиобледенителей, как растворители для извлече-пия ароматических углеводородов и в других областях. [c.74]

    Сырьем для риформинга является фракция, содержащая углеводороды легче пентана. Выходящий из реактора рексформинга продукт имеет октановое число около 95 единиц (с добавкой О,Ъ мл/л ТЭС). Риформат поступает в экстракционную колонну, куда противотоком к нему подается водный раствор ди-этиленгликоля. Ароматические углеводороды вместе с низко-кииящими парафинами переходят в раствор. Высококипящие парафины отбираются сверху экстракционной колонны. Смесь гликоля и рексформата поступает на разделение в отнарную ко- [c.154]

    Гере (475) исследовал более 100 органических жидкостей, стре- мясь найти такую, которая хорошо растворяла бы ароматические углеводороды и не растворяла бы вовсе жирные. Хуже всего жирные углеводороды растворяются в пировиноградной кислоте. Этиловый эфир винной кислоты действует вроде диметилсульфата, ацетоуксус-ный эфир но свойствам близок к анилину, а этиловый эфир ш,аве-левой кислоты напоминает в отношении избирательной растворимости уксусный ангидрид. Наиболее удобными растворителями оказались левулиновая кислота, фенилгидразин, неполный уксусный эфир этиленгликоля и фурфурол. Левулиновая кислота берется в кол1гчестве 3—4 объемов по отношению к бензину и удобна тем, что легко растворяется в воде, что делает возможным с одной стороны выделение извлеченных углеводородов, с другой — регенерацию ее. [c.170]


    Кроме того, этиленгликоль используется для получения синтетического волокна лавсан путем переэтерификации с ди-метиловым эфиром терефталевой кислоты с последующей поликонденсацией. Большое значение имеют также полигликоли, в особенности ди- и триэтиленгликоль, применяемые в качестве селективных растворителей для экстракции ароматических углеводородов из катализатов платформинга и при других процессах. [c.318]

    Растворители, применяемые 1в процессе карбамидной депарафинизации, предназначены в основном для снижения вязкости сырья и создания необходимого контакта карбамида с углеводородами, что при прочих равных условиях обеспечивает большую-полноту извлечения комплексообразующих компонентов. Для создания гомогенной системы растворитель должен в той или иной степени растворять и сырье и карбамид. В качестве растворителей для карбамидной депарафинизации предложено много соединений (спирты и кетоны, хлористый метилен, дихлорэтан, ди-фтордихлорметан, бензол, крезол, этиленгликоль, уксусная кислота, изоо ктан, петролейный эфир, бензин, лигроин, а также вода или водные растворы низших спиртов). Однако далеко не все предложенные растворители нашли промышленное применение в--этом процессе. [c.215]

    Имеются указания [272, 311—314] о возможности применения азеотропной ректификации для выделения и очистки стирола. Стирол высокой степени чистоты можно получить путем азеотропной ректификации узких фракций, выделяемых из смесей, образующихся в коксовых печах при производстве водяного газа или при крекинге и риформинге нефтяных масел. В качестве разделяющих агентов могут применяться метиловый эфир этиленгликоля [272, 311—313], метиллактат, этиллактат [311], многоатомные спирты [312], а также жирные кислоты Сг—С4, особенно уксусная [314]. В процессе азеотропной ректификации стирол остается в кубе, а в виде азеотропов отгоняются более насыщенные углеводороды. Во избежание полимеризации стирола процесс проводится под вакуумом. [c.280]

    Имеются указания о возможности разделения изомеров ксилолов с помощью азеотропной ректификации [320, 321]. В качестве разделяющих агентов рекомендуются треххлористая сурьма [320] и моногликоли, эфиры моногликолей, а также сложные эфиры моногликолей [321]. Примерами этих веществ являются монометиловый эфир этиленгликоля и монометиловый эфир ацетата этиленгликоля. Неароматические углеводороды из ксилоль-ной фракции отгоняются путем азеотропной ректификации с этими разделяющими агентами. При продолжении ректификации в виде азеотропов отгоняются м- и п-ксилолы, а в кубе остается практически чистый о-ксилол. [c.282]

    Одним из эффективных методов повышения пожарной безо-пас1ости в производстве является замена огнеопасных легко-летучих жидкостей, часто применяемых в качестве растворителей, менее опасными жидкостями с температурой кипения выше 110°С (амилацетат, этиленгликоль, хлорбензол, ксилол, амиловый спирт и др.) или негорючими растворителями, К таким растворителям относятся четыреххлористый углерод, хлористый метилен, трихлорэтилен и другие хлорированные углеводороды. [c.415]

Рис. 2.75. Установка экстракции ароматических углеводородов смесью Л/-метилпирро-лидона и этиленгликоля Рис. 2.75. Установка <a href="/info/334043">экстракции ароматических углеводородов</a> смесью Л/-<a href="/info/732195">метилпирро</a>-лидона и этиленгликоля
    Растворители с меньшей растворяющей способностью и, как правило, с большей селективностью — сульфолан, ди-, три- и тетра-этилеигликоль, диметилсульфоксид, смесь Л -метилпирролидона с этиленгликолем — применяются в промышленности как экстрагенты аренов. Преимущество процесса экстракции состоит в возможности совместного выделения аренов (>е—Са из фракции катализата риформинга 62—140°С, в то время как при проведении экстрактивной ректификации необходимо предварительное ее разделение на узкие фракции — бензольную, толуольную и ксилольиую. Последнее необходимо в связи с тем, что, как вытекает из (5.2), летучесть углеводородов в процессе экстрактивной ректификации определяется не только значениями коэффициентов активности, но и давлением насыщенного пара. Поэтому высококипящие насыщенные углеводороды, например Са—Сд, и в присутствии растворителя могут иметь летучесть меньшую, чем беизсл. [c.70]

    В настоящей работе проводилось изучение дицианэтилового эфира этиленгликоля в качестве селективного растворителя при экстракции ароматических углеводородов из керосино-газойлевых фракций. [c.82]

    Проведены опыты по деароматизации керосино-газойлевых фракции дицианэтиловым эфиром этиленгликоля в смеси с N-мeтилпиppoлидoнo с применением метода рационального планирования (планирование с применением латинских квадратов). Методом регрессионного анализа получень уравнения, описывающие зависимость выхода рафината и содержания ароматических углеводородов в рафинате от кратности растворителя к сырью, температуры процесса, числа ступеней контакта, содержания N—метилпирролидона. Погрешность уравнений, полученных методом рационального планирования, в 2,5 раза меньше, чем погрешность уравнений, полученных методом полного факторного эксперимента. [c.185]

    Наибольшее распространение ироцесс селективной очпстки получил при производстве масел, где основными растворителями являются фенол и фурфурол. Кроме того, избирательные (селективные) растворители (этиленгликоли, сульфолан и др.) П1)и-меняют для извлечения из нефтяного сырья ароматических углеводородов, необходимых для нефтехимического синтеза. В заводских условиях селективную очистку проводят в аппаратах непрерывного действия (колоннах, смесителях и отстойниках, цент робежных экстракторах и др.). При исследовательских работах и в лабораторном практикуме очистку проводят как в экстракторах периодического действия, так и на установке непрерывного действия в противоточных экстракционных колоннах. Условия очистки в том и другом случаях выбирают в соответствии с заданием по литературным данным и данным, приведепным в настоящем пособии. [c.183]

    Наибольшее применение в качестве экстрагентов для извлечения ароматических углеводородов получили гликоли, сульфолан (тетрагидротиофендиоксид) [97, 99], диметилсульфоксид [99], N-метилпирролидон (в смеси с этиленгликолем и водой) [100. Первоначально использовали диэтиленгликоль, который в последнее время заменяется триэтиленгликолем [101] и тетраэтилен-гликолем [102]. В табл. 31 даны показатели экстракции с применением различных растворителей [79, с. 69]. [c.179]

    Современные эффективные экстрагенты обеспечивают хорошее разделение ароматических и неароматических углеводородов и позволяют получать бензолы с температурой кристаллизации не ниже 5,4°С (чистота 99,9% мол. и выше). Например, в процессе сАросольван , в котором используется в качестве растворителя Ы-метилпирроли он с этиленгликолем, получается 99,99%-ныи бензол с содержанием не более 0,003% неароматических углеводородов [103]. одержание примесей и циклоалканов и парафинов в ароматических углеводородах С —Сз не превышает обычно 0,03—0,1%. Для повышения степени чистоты ароматических углеводородов процесс экстракции дополняют экстрактивной ректификацией. Выделение бензола высокой степени чистоты достигается, например, экстрактивной перегонкой с диметилформамидом. [c.179]

    Для извлечения ароматических углеводородов из гидрированных бензинов пиролиза, так же как из катализатов риформинга, наиболее часто применяется экстракция. Широкое распространение получила экстракция смесью Н-метилпирролидона с этиленгликолем (процесс Аросольван ) [102], обеспечивающая в сочетании с последующей ректификацией получение высококачественных товарных ароматических углеводородов. В качестве экстрагентов применяются также гликоли, сульфолан, диметилсульфоксид и другие растворители [124]. При переработке узких гидроочищенных фракций пиролиза, содержащих более 75% одного какого-либо ароматического углеводорода (чаще бензола) применяется экстрактивная ректификация с Ы-метилпирролидоном (процесс Дистапекс ) [125], диметилформамидом [126] или другим растворителем. Двухстадийное гидрирование узкой фракции бензина пиролиза (Сб—Се) с последующей экстракцией гидрогенизата осуществляется и в процессах других фирм. Так, в одном из процессов на первой ступени гидрируются диолефины и стирол на катализаторе из благородного металла (давление 2,7—6,2 МПа, температура 65—218°С), а на второй ступени на алюмокобальтмолибденовом катализаторе гидрируются олефины и удаляются сернистые соединения [127]. [c.186]

    Экстракция гликолями. Ди-этиленгликоль был широко использован для выделения из нефтяных продуктов ароматических углеводородов — Gg. Процесс был разработан фирмами Universal Oil Produ ts и Dow hemi al Со (США) в 1952 г. и назван процессом юдекс [47—55]. [c.51]

    Результаты исследования селективности и емкости смесей К-ме-тилпирролидона с другими растворителями показаны на рис. 2.20. Из испытанных семи смесей К-метилпирролидона с другими растворителями наилучшие результаты получены с формамидом, несколько худшие показатели наблюдаются при применении этиленгликоля, глицерина и этаноламина. Вследствие низкой термической стойкости формалщда (распад формамида с образованием двуокиси углерода и аммиака при 150 °С 0,1 %/ч) использование его в качестве растворителя нежелательно. По температуре кипения этаноламин (170 °С) и глицерин (290 °С) значительно отличаются от К-метилпирроли-дона (204 °С), поэтому при выделении ароматических углеводородов [c.62]

    Показатели, приведенные в табл. 2.10 и 2.11, могут меняться в зависимости от концентрации и состава ароматических углеводородов, паходяш ихся в сырье. Поэтому данные этих таблиц необходимо рассматривать как приближенные. Наилучшие показатели получены при использовании сульфолана, смеси К-метилпирролидона с этиленгликолем и тетраэтиленгликоля. [c.68]

    Исходным сырьем служил ксилол, полученный при каталитическом риформинге, примерно следующего состава (в вес. %) этилбензол 20 га-ксипол 20 л4-ксилол 40 о-ксилол 20. В качестве растворителя применяли монометиловый эфир этиленгликоля. Результаты показывают, что достигается достаточно высокое обогащение углеводородной части кристаллов извлекаемым ароматическим углеводородом. [c.130]

    В опытах применяли эффективный противоточнып колонный экстрактор. Насадкой служили кольца Рашига. Сырье подавали в нижнюю часть колонны, триэтиленгликоль — в верхнюю часть. При температуре верхней части колонны 175° С и нижней 160° С, отношении три-этиленгликоля к сырью 6,3 1 выход рафината, представляющего собой компонент дизельного топлива марки Л (ГОСТ 1667—68), из керосино-газойлевой фракции составил 62,8 вес. % (содержание общей серы в рафинате 0,89 вес. %), а выход рафината газойля каталитического крекинга —57,4 вес. % (содержание общей серы 0,16 вес. %). Рафинат газойля каталитического крекинга после экстракции сернистых соединений и ароматических углеводородов можно было использовать как высококачественное дизельное топливо. Характеристика экстрагированных сернисто-ароматических концентратов приведена в табл. 17. [c.108]

    На отечественных установках для извлечения ароматических углеводородов из катализата платформинга наиболее распространенным экстрагентом является водный раствор диэтиленгликоля (ДЭГ), но его повсеместно заменяют более эффективным три- и тетра этиленгликолями (ТЭГ и тетраЭГ). [c.260]

    К группе высокотемпературных органических теплоносителей (сокращенно ВОТ) 0Т1ЮСЯТСЯ индивидуальные органические вещества глицерин, этиленгликоль, нафталин и его замещенные, а также некоторые производные ароматических углеводородов (дифенил, дифениловый эфир, дифенилметан, дитолилметан и др.), продукты хлорирования дифенила и полифенолов (арохлоры) и многокомпонентные ВОТ, например дифенильная смесь, представляющая эвтектическую смесь дифенила и дифенилового эфира. Подробно свойства ВОТ и их применение описываются в специальной литературе .  [c.317]

    Заметим, что поглощение примесей растворами (барботирование возду ха через жидкий поглотитель) относится к одному из наиболее часто применяемых способов и позволяет использовать высокие скорости пробоотбора (до 30-50 л/мин) [24,40,41]. Преимуществом данного способа является также то, что для последующего определения можно брать гишк-вотную часть раствора или (в случае парофазного варианта) паров над ним К недостаткам абсорбционного пробоотбора следует отнести невозможность получения представительной пробы при наличии в воздухе аэрозолей и твердых частиц, что характерно для большинства суперэкотоксикантов, а также невысокие коэффициенты концентрирования. Кроме того, при отборе больших объемов существенно возрастает пофешность, связанная с испарением поглотительного раствора или потерей целевых компонентов из-за высоких скоростей аспирирования По этим гфичинам абсорбцию редко используют для извлечения указанных веществ из воздуха. Так, концентрирование ХОП осуществляют в поглотительных приборах, заполненных ДМФА [421 Д.пя извлечения хлорированных углеводородов и фосфорорганических пестицидов применяют раствор этиленгликоля в глицерине. [c.179]

    Лдипиновая кислота и этиленгликоль являются продуктами химической переработки углеводородов, и их конденсация служит одним из примеров получения смол из нефтехимического сырья. [c.186]

    Надежность полученных результатов возрастает, если имеет место образование нестойких комплексов между одной из сравниваемых неподвижных фаз и соединениями того или иного гомологического ряда. Так, непредельные углеводороды в узкой температурной области ( 20—65 °С) образуют п-комплексы с нитратом серебра, а при температурах до 100—130 °С — с нитратом таллия, растворенными в глицерине, ди-, триэтиленгликоле или поли-этиленгликоле-400. Первичные и вторичные амины в области температур 85—140 °С вступают в донорно-акцепторные взаимодействия с NaOH, а алкилпиридины способны образовывать ком- [c.182]

    V — сухой газ VI, XII — насыщенный легкими углеводородами регенерированный абсорбент с молекулярной массой 100 VII — регенерированный абсорбент с молекулярной массой 140 VIII — насыщенный абсорбент с молекулярной массой 100 IX — обводненный этиленгликоль X — сконденсировавшиеся углеводороды (конденсат) XI — газ XIИ — сухой газ XIV — деэтанизированный насыщенный абсорбент с молекулярной массой 100 XV — широкая фракция углеводородов Сз .высшне Р генерированный абсорбент с молекулярной массой 100. [c.240]


Смотреть страницы где упоминается термин Этиленгликоль углеводороды: [c.728]    [c.251]    [c.40]    [c.106]    [c.406]    [c.342]    [c.259]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Этиленгликоль



© 2025 chem21.info Реклама на сайте