Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь, оксалат

    Анализируемый раствор, содержащий ионы цинка и меди, вносят в колонку с катионитом, подготовленным, как указано выше. Дистиллированной водой промывают колонку с катионитом до нейтральной реакции фильтрата по метиловому оранжевому. Затем пропускают через колонку 40—60 мл 0,12 М раствора оксалата аммония. При этом медь элюируется в виде анионного комплекса с оксалат-ионами. В этом элюате медь комплексоном не титруется его обрабатывают раствором 6%-го пероксида водорода (6—7 капель) при нагревании в течение 10 мин, затем охлаждают и добавляют раствор аммиака до образования медноаммиачного комплекса. Полученный раствор титруют комплексоном в присутствии индикатора мурексида. После добавления мурексида раствор приобретает ярко-желтую окраску. В зависимости от количества добавленного мурексида и концентрации меди раствор иногда становится темно-коричневым. Если раствор приобретает желто-зеленый цвет, его необходимо несколько разбавить водой и подождать 1—2 мин, чтобы окраска раствора стала отчетливо желтой. При титровании меди комплексоном в точке эквивалентности цвет раствора резко переходит в чисто фиолетовый. Перед концом титрования раствор окрашивается в темно-красный цвет. [c.325]


    Далее раствором оксалата аммония элюируют ионы меди, образующие несколько более устойчивый комплексный анион с оксалат-ионом, чем ионы цинка. Оксалатный комплекс ионов меди разрушают пероксидом водорода и определяют содержание меди титрованием раствором комплексона П1. Ионы цинка десорбируют соляной кислотой и определяют их содержание также комплексонометрически. Метод может быть применен для анализа сплавов, содержащих медь и цинк  [c.325]

    Медь (П) оксалат см. Медь (II) щавелевокислая [c.300]

    После отделения меди из колонки вытесняют цинк раствором 2М хлороводородной кислоты. Предварительно колонку промывают водой (50-60 мл) для отмывания от избыточных оксалат-ионов. Промывную жидкость отбрасывают. [c.103]

    Во внешнюю или внутреннюю координационную сферу комплексного соединения входит ион медн Объяснить действие на комплексное соединение оксалата аммония и сульфида аммоиия для этого написать уравнение диссоциации комплексного иона, найти в табл. 12 Приложения значение его константы нестойкости и в табл. 8 значения произведения растворимости соответствующих солей меди. [c.130]

    Сконцентрированный на поверхности твердого электрода металл подвергают анодному растворению, снижая напряжение и регистрируя возникающий анодный ток. Сила анодного тока при определенных условиях пропорциональна концентрации ионов металла в растворе. На таком принципе основаны, например, методики определения серебра в металлическом кадмии, ртути и серебра — в оксалатах аммония или калия, кадмия, свинца и меди — в цинке, кобальта — в молибдате аммония и др. [c.499]

    Для сенсибилизации гидрофильных копировальных слоев, наносимых на подложку в виде водных растворов, обычно применяют хорошо растворимые натриевые соли азидов. Перечисленные светочувствительные системы задубливаются достаточно сильно, и полученные печатные формы могут применяться без дополнительной обработки. Эксплуатационные свойства рельефа можно улучшить обработкой проявленной формы подкисленным раствором бихромата аммония, хлористой меди, оксалата железа [42] или обработкой солями циркония [44]. [c.184]

    Предлагается [352] реактивировать алюмосиликатные катализаторы, содержащие менее 0,2 вес. % никеля (или меди, железа и ванадия), пропиткой достаточным количеством водного раствора соединений хрома, которые разлагаются при прокаливании с образованием окиси хрома, а затем обрабатывать катализатор при 538—705 °С водяным паром 2—48 ч. При этом на каждый атом никеля наносится два или больше атома хрома. Количество окиси хрома должно быть не менее 0,5 вес. % на массу катализатора. Для пропитки применяют водный раствор нитрата, ацетата хрома, хромата и бихромата аммонпя или наносят хром в процессе крекинга добавлением к крекируемому сырью нафтената, оксалата или комплексного цианида хрома. [c.223]


    В результате многократной циркуляции в катализаторе накапливается некоторое количество взвешенных примесей, состоящих в основном из оксалатов меди, удаление которых осуществляется в регенераторе 2. [c.193]

    По заданию преподавателя определить константу устойчивости и состав комплексных ионов, образующихся в системе сульфат меди и оксалат натрия. [c.102]

    Написать уравнения реакций гидролиза и указать реакцию среды в растворе каждой соли 1) сульфида рубидия 2) ортофосфата натрия 3) сульфата меди 4) нитрата алюминия 5) нитрата цинка 6) хлорида магния 7) сульфида хрома 8) оксалата железа. [c.73]

    Сущность работы. Ионы меди и цинка образуют комплексные соединения с оксалат-ионом, константы нестойкости которых различны [c.99]

    Тантал с пирогаллолом образуют комплекс в среде 4 и. раствора НС1 и 0,0175 М оксалата. Молярный коэффициент поглощения комплекса е в этих условиях составляет 4775. Оптическая плотность растворов пропорциональна концентрациям тантала до 40 мкг мл. Определению мешают молибден (VI), вольфрам (VI), уран (VI), олово (IV). Влияние ниобия, титана, циркония, хрома, ванадия (V), висмута, меди не. существенно, и его можно учесть введением их в холостой раствор. Определению тантала мешает фторид, платина, поэтому сплавление анализируемых проб нельзя проводить в платиновой посуде. [c.386]

    Некоторые другие реакции оксалат-ионов. Оксалат-ионы дают с а-нафтиламином и и-толуидином в присутствии ацетата меди(П) осадки [c.432]

    Если колонку, на катионит которой предварительно нанесен раствор, содержащий катионы меди и цинка, промыть раствором оксалата аммония, более стойкий анион комплекса меди перейдет в раствор, а ионы цинка останутся связанными с катионитом. Поэтому при промывании слоя катионита раствором оксалата аммония в фильтрате можно обнаружить только медь. После промывания колонки раствором соляной кислоты, вследствие десорбции, ионы цинка будут обнаружены во втором, кислом фильтрате. [c.99]

    Цель работы состоит в определении константы нестойкости комплексного иона оксалата меди Си ( 204) . [c.149]

    Медь (И) оксалат Щавелевой кислоты медная (И) [c.302]

    Со, N1, Ре, Т и V с солохромовым фиолетовым образуют комплексы и мешают определению алюминия. Медь образует нерастворимый комплекс. Фториды, цитраты и оксалаты уменьшают высоту волны. Комплекс алюминия с солохромовым фиолетовым КЗ при обычной температуре образуется медленно, при нагревании до 60" С — в течение 2 мин. [739]. При содержании 0,01 — 1,5 шг А1/50 Л1Л калибровочный график прямолинейный и проходит через начало координат [739]. Чувствительность метода [c.144]

    Вычислить растворимость (моль/л) 1) карбоната меди в растворе, имеющем исходное значение pH О, pH 1,0 2) карбоната кальция в растворе, имеющем исходное значение pH О, pH 4,0 3) оксалата свинца в растворе, имеющем исходное значение pH 1,0, pH 3,0. [c.27]

    При промывании колонки раствором оксалата аммония медь, образующая более прочный комплексный ион Си(С20 ) , переходит в раствор, а цинк остается на катионите. Комплекс меди разрушают пероксидом водорода и определяют медь титрованием стандартным раствором ЭДТА в присутствии мурексида. [c.102]

    Электролиты для осаждения меди делятся на две основные группы — кислые и щелочные. К первой группе относятся сернокислые, борфтористоводородные, йодные, йодидные, хлоридные, бромидные, алкил- и арилсульфоновые, перхлоратные, оксалат-ные, цитратные. тартратные, формиатные и некоторые другие электролиты. [c.144]

    Меди пирофосфат (тригидрат) Медь сернокислая Калия пирофосфат Калия двойной пирофосфат Аммония гидроокись Калия оксалат Калия нитрат 57—105 150—250 0,9—3 15—28 8—16 85-105 300- 375 0,9—2 61,5 263 10 5 5 86,5 320,4 10 5 5 [c.146]

    Исследование комплексного соединения l u( N113)4] SO4. Внести по несколько кристаллов полученной соли в 4 пробирки и растворить в небольшом количестве воды. Определить в одной из них наличие сульфат-иона, добавив соответствующий реактив. Исследовать прочность полученного комплексного иона для этого во вторую пробирку поместить железный гвоздь. Выделяется. ли медь на железе из раствора медного купороса На раствор в третьей пробирке подействовать раствором оксалата аммония. Выпадает ли осадок оксалата меди В четвертую пробирку добавить раствор сульфида аммония. Что наблюдается Поместить несколько кристаллов соли в сухую пробирку и слегка нагреть  [c.129]

    НО высока. Определению мешают все редкоземельные элементы, торий, уран, висмут, медь, железо, барий, скандий и др. Для повышения избирательности лучше применять маскирующие реагенты ЭДТА, тартраты, оксалаты, фториды и некоторые другие. [c.79]

    Р зработан новый более активный катализатор НТК-8 /87/, приготовляемый осаждением оксалатов меди и цинка из смеси раствора их азотнокислнх солей и гидроокиси алюминия с последующим термиче- [c.195]


    Для разделения меди(П) и цинка(П) используют различие в их десорбируемости оксалатом аммония после поглощения катионитом .  [c.324]

    Приготовьте раствор [Си(ЫНз)4]504, слив растворы сульфата меди и аммиака. Полученный раствор разделите в три пробирки. В первую пробирку прибавьте гидроксид натрия, во вторую — сульфид аммония, а в третью — оксалат аммония. Что наблюдается Объясните полученные результаты, сравнив значения ПРсиз, ПРсиСаО и ПРсщона с ЛГдис комплекса [Си(ЫНз)4] +. Выпадают ли осадки гидроксидов при взаимодействии щелочи с растворами, содержащими ионы [2п(ЫНз)4]2+, [Ы1(ЫНз)б] +  [c.293]

    Совершенно по-особому проходят в гелях и процессы кристаллизации. Рост кристаллов внутри студней протекает спокойно, путем медленной диффузии. Поэтому в студнях удается выращивать очень крупные кристаллы многих веществ. Так,, в студне кремниевой кислоты удалось вырастить кристаллы золота (до 3 мм величиной), крупные кристаллы меди, серебра и других металлов, а также некоторых химических соединений (оксалат бария, фторосили-кат бария). [c.395]

    Выполнение работы. В две пробирки с раствором сульфата меди добавить в одну раствор оксалата аммония, в другую — сульфида аммония. Написать уравнення реакций и отметить цвета выпавших осадков. В двух других пробирках получить комплексное соединение меди, добавив к 4—5 каплям 1 н. раствора Си504 раствор йммиака до растворения выпадающего вначале осадка основной соли меди. Отметить цвет полученного комплексного соедпиения. Написать уравнение реакции взаимодействия сульфата медн с аммиаком, учитывая, что координационное число меди равно четырем. [c.126]

    Растворимы в воде все хлориды, кроме хлорида меди (I), нитриты, нитраты, ацетаты, сульфаты. Нерастворимы в воде все гидроксиды, гексацианоферраты (II и III), сульфиды, карбонаты, оксалаты, фосфаты, арсенаты, силикаты, хроматы, а также иодиды меди (I) и ртути (И). Hgl растворим в избытке KI собразованием комплекса [Hgl 1 . [c.61]

    Для растворения солей меди в щелочном растворе в нем должны присутствовать лиганды которые связывают ноны меди в комплекс С ионами меди образуют комплексы коны гидроксила тартрата оксалата карбоната аммиак глицерин трилон Б и неко торые др Комплексообразователи (лиганды) не только увеличивают растворимость солей меди в щелочной среде но и влияют на Процесс восстановления ионов меди Следовательно вещества образующие прочные комплексы с нонами медн увеличивают устой чивость растворов химического меднения Кроме того комплексо образователи влияют на скорость каталитического восстаноаления меди и на физические свойства получаемого покрытия тотность блеск цвет и т п В качестве комплексообразователей и блеско образующих веществ могут быть использованы также амино уксусные кислоты этиленаминоуксусные кислоты Самые распро [c.75]

    Испытать действие растворов оксалата аммойня и сульфида a г. лoния на полученный раствор комплексной соли меди. От действия какого реактива выпадает осадок На присутствие каких ионов в растворе комплексной соли указывает появление этого осадка Добавить в пробирку, где выпал осадок, еще 6—7 капель того же реактива и для ускорения коагуляции поместить пробирку в водяную баню, нагретую до кипения. Сохранилась ли в растворе окраска комплекса меди  [c.126]

    Приборы и реактивы Весы техко-хин)1ческие, воронка Бюхнера, фарфоропая ступка, водоструйный насос, стакан вместимостью 100 мл, мерный цилиндр вместимостью 100 мл. Пентагидрат сульфата меди (II), этанол, растворы аммиака (25%-ный), хлорида бария (2 н.), оксалата аммония (0,5 н.), сероводородная вода. [c.129]

    Приборы и реактивы. Микроколбочка, Титан (порошок или стружка). Цинк гранулированный. Лакмусовая бумажка синяя и красная. Растворы хлороводородной кислоты (4 и. плотность 1,19 г/см ) серной кислоты (4 h.j плотность 1,84 г/см ) гидроксида натрия (4 н,) сульфата оксотитана (0,5 н.) хлорида оксоциркония (0,5 н.) хлорида меди (II) (0,1 н,) хлорида железа (III) (0,5 н.) сульфида аммония (0,5 н.) пероксида водорода (3%-ный) гидрофосфата натркя (0,5 н.) оксалата аммония (0,5 н.). [c.247]

    Все эти недостатки существующих методов систематического анализа заставили Н. А. Тананаева подробно разработать капельный метод на бумаге или на пористых пластинках и дробный метод в полуми-кропробирках. В дробном методе важную роль играет выделение катионов из раствора в виде металлов. Это осуществляется с помощью свободных металлов. Последние можно использовать соответственно порядку расположения их в электрохимическом ряду напряжений магний, алюминий, цинк, железо, олово, медь. Магний и алюминий позволяют вытеснить большинство металлов из раствора. Однако удобнее применять цинк как менее активный металл, вытесняющий в солянокислой среде ртуть, серебро, медь, мышьяк, сурьму, висмут, олово. Выделив эти металлы, можно, например, дробным путем обнаруживать кальций в виде оксалата. [c.151]

    Перманганатометрию чаще всего применяют для анализа солей железа (II), железа (III) (после восстановления), марганца (И), кальция (в виде оксалата), меди (I), олова (И), титана (III), ванадия (III), молибдена (Ш), хрома (III) (косвенно , анионов-восстановителей нитрита, роданида, гексацианоферроата перекиси водорода и перок-содисульфатов (косвенно). Из органических веществ чаще всего определяют щавелевую кислоту и оксалаты, косвенно гидроксиламин NH2OH. [c.400]

    Разработаны методы меркурометрического определения хлорид-иона в присутствии щелочных и щелочноземельных металлов, а также катионов 3-й аналитической группы и меди (И). Не мешают карбонаты, ацетаты, нитраты, фосфаты, хлораты. Мешают оксалаты, хроматы, бихроматы и перманганаты. Меркурометрически можно определить хлорат-ион СЮ , восстанавливая его до хлорид-иона нельзя определять иодид-ион вследствие разложения иодида ртути (I)  [c.426]

    Оборудование и реактивы. Штатив с пробирками. Газовая горелка. Водяная баня. Растворы серная кислота (2 н.), гидроксид натрия (2 н.), азотная кислота (1 1), р=1200 кг/м и р = 1400 кг/м гидроксид калия (6 п.), сульфат меди (11), иетрат ртути (II), иодид калия, перманганат калия (0,001 н.), нитрат марганца (11), нитрат хрома (III), нитрат свинца, нитрат калия, нитрит калия. Хлорная вода, бромная вода, сероводородная вода. Пероксид водорода 3%-ный и 10%-ный раствор, сульфид аммония, оксалат натрия. Сухие соли дихромат аммония, висмутат натрия. Оксид свинца (IV). Иод кристаллически Алюминиевые опилки или фольга. Гигроскопическая вата. Наждачная бумага. Гвозди. Красная лакмусовая бумага. Фильтровальная бумага. Свежепрнготоиленные растворы сульфата железа (II), крахмала. [c.141]

    Амперометрическое титрование. Описана методика биамперомет-рического титрования натрия с двумя поляризованными электродами по реакции осаждения его в виде оксалата в среде изопропинола [641. Б качестве индикаторных электродов использовали медный амальгамированный вращающийся микрокатод и медный перфорированный анод с большой поверхностью. Четкие перегибы на кривых титрования наблюдали при потенциале 1 В. Возникновение тока в цепи обусловлено переходом ионов меди с анода в раствор и восстановлением их на катоде, перегибы на кривых титрования возникают за счет изменения электропроводности раствора вследствие осаждения определяемых ионов. [c.94]

    Аммиак и едкие щелочи [405, 406, 1865] почти не имеют практического значения для отделения тория от р. з. э. При их использовании получается высокая концентрация гидроксильных ионов даже в разбавленных растворах, что приводит к образованию очень нежелательного местного избытка реагента, вызывающего одновременное осаждение и гидроокисей р. з. э. Более пригодным для этой цели оказалось применение окислов и карбонатов некоторых металлов, например, 2пО, СиО, РЬО, 2пСОз и РЬСОз, создающих значительные концентрации гид- роксильных ионов. Использование перечисленных окислов и, карбонатов [410, 412, 763, 778, 864, 1487, 1543], а также закиси Меди и карбоната марганца [1543] обеспечивает количественное отделение тория от р. з. э. Применению любого из этих оса-дителей должно предшествовать отделение циркония и восстановление четырехвалентного церия. Определение обычно заканчивается осаждением тория в виде гидроокиси или оксалата. Однако этот метод не нашел широкого использования вследствие продолжительности и необходимости дополнительного отделения введенных ионов металла. [c.95]

    Определение осаждением в виде окшлата.Щавелевая кислота осаждает четырехвалентный уран из солянокислых растворов в виде оксалата урана U( 204)2-6H20 [579]. Растворимость оксалата урана (IV) в воде найдена равной 0,05 г л [56]. В 0,12 N растворе соляной кислоты она является минимальной и составляет 0,005 г/л, в то время как в 6 Л/достигает 0,5 г/л. Однако осаждение из растворов с концентрацией соляной кислоты ниже 2 iV в присутствии цинка, железа (И), меди и некоторых других элементов приводит к частичному осаждению оксалатов перечисленных элементов. Вследствие этого осаждение урана (IV) в виде оксалата проводят из растворов с концентрацией соляной кислоты от 2 до 3 Л/. Выпавший осадок отфильтровывают через плотный бумажный фильтр только после перемешивания при комнатной температуре не менее 1 часа. Фильтрование сразу после осаждения приводит к тому, что некоторая часть осадка (0,5—1%) проходит сквозь фильтр. [c.72]

    Применение щавелевой кислоты для отделения урана ссно-вано на ее способности осаждать уран (1 ) нз солянокислых растворов в виде труднорастворимого оксалата урана (IV) [579]. Наиболее полное осаждение урана (IV) достигается из растворов с концентрацией соляной кислоты, равной 0,12tV. С целью достижения лучшего отделения урана от других элементов осаждение проводят обычно из растворов с концентрацией соляной кислоты не ниже 2N. Проведение осаждения при более низкой кислотности в присутствии цинка, железа (И), меди и некоторых других элементов приводит к частичному осаждению оксалатов этих элементов совместное ок-салатом урана (IV). Осаждение урана (IV) из растворов с кислотностью выше чем ЗЛ становится уже неполным. [c.277]


Смотреть страницы где упоминается термин Медь, оксалат: [c.433]    [c.1961]    [c.282]    [c.178]    [c.123]    [c.176]    [c.128]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Оксалат-ион



© 2025 chem21.info Реклама на сайте