Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал в природе

    В последние годы экстракция нашла широкое применение для разделения металлов и получения их в состоянии высокой чистоты. Во многих случаях она является единственным методом, который удается применить в промышленном масштабе, например, при очистке металлов, служащих топливом для атомных реакторов. Это относится как к металлам природного происхождения (уран, торий), так и к являющимся продуктами облучения (плутоний). С помощью экстракции разделяются также и другие металлы из семейства актинидов. С успехом решено разделение циркония и гафния, а также тантала и ниобия—металлов, встречающихся в природе всегда парами и, благодаря большому химическому подобию, трудных для разделения другими методами. Экстракцией можно выделить из отбросных продуктов промышленности (шлак, зола, шлам) содержащиеся в них следы различных металлов, имеющих важное техническое применение (германий, индий, церий и др.). [c.424]


    Электрохимическая природа процесса окисления при повышенных температурах дает основание предполагать, что контакт различных металлов влияет на скорость процесса. Такое явление описано [29]. Например, реакция серебра с газообразным иодом при 174 °С ускоряется при контакте серебра с танталом, платиной или графитом. Скорость образования на серебре пленки Agi (который обладает в основном ионной проводимостью) определяется скоростью перемещения электронов сквозь эту пленку. При контакте серебра с танталом ионы Ag+ диффундируют по поверхности тантала, который снабжает их электронами, ускоряющими превращение серебра в Agi. Поэтому пленка Agi распространяется и по поверхности тантала (рис. 10.5). Было обнаружено также [30], что на серебре, покрытом пористым слоем электро-осажденного золота, в атмосфере паров серы при 60 °С образуется очень прочно связанная с поверхностью пленка Ag S. [c.199]

    Ниобий и тантал почти всегда встречаются совместно атомное содержание их в природе невелико (соответственно 2 10" и 2 10- %). [c.286]

    Нахождение в природе и получение ванадия, ниобия и тантала [c.97]

    Соединения ванадия широко распространены в природе, но они очень рассеяны и не образуют каких-либо значительных скоплений массовое содержание ванадия в земной коре составляет примерно 1,5-10 %. Ниобий и тантал почти всегда встречаются совместно атомное содержание их в природе невелико (соответственно 2- Ю и 2- 10 %). [c.318]

    Ниобий и тантал. Ниобий и тантал являются редкими и рассеянными химическими элементами, их массовые доли в земной коре равны соответственно МО-3 2-10- %. В природе ниобии и тантал обычно встречаются вместе, сопутствуя минералам других металлов. [c.267]

    Фактические данные по упрочнению твердых растворов представлены на рис. И. Свойства бинарных твердых растворов приведены в работах [18]. (сплавы алюминия, меди и железа), [20] (ванадия), [21] (ниобия). Результаты исследования сплавов тантала, выполненного автором вместе с Н.П. Селянской, приводятся впервые (кратко они бьши сообщены в обзорной статье [19]). В зависимости от природы растворенных элементов [c.22]

    В зависимости от давления ацетилена и температуры могут быть получены различные нитевидные кристаллы графита. Однако температура подложки не должна быть ниже 900° С. На рост графитовых усов влияет как природа и состояние подложки (обычно металлы вольфрам, тантал, титан, рений и др.), так и условия обтекания ее потоком газа вследствие естественной конвекции. На металлических подложках, неоднократно использованных в опытах, нитевидные кристаллы растут реже, нежели на свежих. Особенно часто растут такие кристаллы на срезах металла, а также на неоднородностях поверхности. Если на поверхность металла нанести перед опытом царапину, то вдоль нее вырастут нитевидные кристаллы, как бы декорируя эту царапину. Когда на поверхности молибдена был осажден вольфрам с различной ориентацией, то наибольшее число нитевидных кристаллов графита выросло на поверхности с ориентацией <100>. [c.46]


    Нахождение в природе. Содержание скандия в земной коре оценивается равным 0,0006%. В природе скандий рассеян и встречается лишь в виде незначительной примеси в минералах редкоземельных элементов, бериллия, тантала, ниобия, олова, вольфрама, циркония, титана, алюминия, а также в золах углей, природных водах и окаменелых остатках рыб. Для получения 1 г оксида скандия нужно переработать 3—4 кг гадолинита, [c.205]

    Второе подсемейство составляют торий, протактиний и уран. Эти элементы похожи на металлы третьего переходного ряда соответствующих групп — с 4-й по 6-ю, т. е. на гафний, тантал и вольфрам. Аналогия начинается со степеней окисления и включает химию некоторых бинарных соединений, поведение в водных растворах и образование комплексов. Однако по кристаллическим структурам ряда соединений эти элементы близки к лантаноидам, поэтому, в частности, торий в природе встречается в основном совместно с лантаноидами. [c.386]

    Ниобий и тантал. Ниобия в природе примерно в 11 раз больше, чем тантала, но ниобий почти всегда встречается совместно с танталом в минералах, содержащих также Са, Ре, Мп и РЗЭ. Б этих минералах могут присутствовать также 5п, Т1 и 2г. [c.29]

    Хлорирование в настоящее время широко используют в технологии редких металлов для перевода рудных концентратов и некоторых промежуточных продуктов технологии в хлориды, удобные для последующего разделения, очистки и получения металлов. Хлорирование является основным методом, используемым в технологии титана. Хлорируется значительная доля рудных концентратов циркония и гафния, тантала и ниобия, редкоземельных элементов и др. Фторирование применяют в-значительно меньшем масштабе, главным образом для получения фторидов редких металлов из окислов или вторичных металлов с целью их металлотермического или электрохимического восстановления. Хлорирование и фторирование широко используют при переработке комплексных руд и различного рода сложных композиций окислов или металлов, так как различие в температуре плавления и температуре кипения хлоридов и фторидов редких металлов позволяет успешно разделять их и осуществлять их тонкую очистку. На основе процессов хлорирования и фторирования созданы короткие, изящные технологические схемы. Благодаря высокой реакционной способности хлора и фтора процессы хлорирования и фторирования практически осуществляются нацело, и степень перевода исходных материалов в хлориды и фториды колеблется между 98 и 100%. Их огромным преимуществом перед другими методами вскрытия и переработки рудных концентратов и других соединений редких металлов является отсутствие сточных вод и сброса в атмосферу. Создание технологических схем без водных и атмосферных сбросов является эффективной мерой по охране природы. [c.65]

    По химической природе пентагалиды ванадия, ниобия и тантала вляются типичными кислотообразователями. При действии воды они подвергаются гидролизу. Пентафториды склонны к образованию комплексных анионов. Кроме чисто галогенных соединений для ванадия и ниобия известны смешанные галогено-кис-лородные соединения УОГ3 и ЫЬОГз также ковалентной природы. [c.278]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    Ванадий, ниобий, тантал распространены в природе исключительно в виде соединений. Содержание их в земной коре V 1,5 10" масс. %, ЫЬ 2,4 10" масс. % и Та 2,1 10" масс. %. Минералы с большим содержанием этих элементов встречаются сравнительно редко Важным промышленным сырьем для получения ванадия являются тита-номагнетитоБые железные руды (содержание ванадия в них до 1%) и осадочные железные руды (V до 0,1 %). Ниобий и тантал почти всегда встречаются вместе. Наиболее важные их минералы — колумбит и танталит — представляют собой изоморфные смеси ниобатов и танта-латов железа и марганца (РеМп)(ТаОд)2 и (РеМп)(ЫЬОз)г. [c.136]

    В природе ниобий и танчал входят в состав группы минералов колумбита — танталита с общей формулой (Мп , Ре )(Та, КЬ)20 . Объясните, почему ниобий и тантал могут одновременно присутствовать в этих минералах, тогда как ванадия в них не найдено. [c.289]

    Ниобий и тантал встречаются в природе главным образом в виде солей с железом (в двухвалентном состоянии) в минералах колумбите Ре(ЫЬОз)а и танталите Ре(ТаОз)2- Назо- вите их. [c.78]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например. Ре, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления HNOз протекает в нескольких параллельных направлениях и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Рис. 48 иллюстрирует относительное содержание продуктов восстановления азотной кислоты железом в зависимости от ее концентрации. [c.263]

    Элементы подгруппы ванадия в природе. Получение и применение. Из элементов подгруппы ванадия чаще всех встречается сам ванадий. Содержание его в земной коре составляет 1,5-10 ниобия — 2,4-10 и тантала — 2,1 10 7о (масс.). Соединения этих элементов присутствуют в различных рудах. Основным источником ванадия в промышленности являются бурые же-лезняки и титано-магнетиты, содержащие 0,1—> 0,2% (масс.) ванадия. [c.466]

    Ниобий и тантал яыеют сходные свойства и обычно сопутствуют в природе друг другу. Поэтому прн производстве этих метал.лов выделяют совместно их соединения, а затем их разделяют различными методами. Рассмотрим два метода разделения, применяемые в производстве ниобия и тантала. [c.267]

    Ниобий (колумбий) и тантал обычно встречаются в природе В(Месте в виде минералов колумбита FeNb20e и танталита РеТа20б. Ниобий находит некоторое применение в качестве присадки в специальных сталях и как сверхпроводник. Карбид тантала ТаС—вещество, обладающее очень высокой твердостью его используют при изготовлении режущих инструментов, предназначенных для скоростной обработки металлов. [c.575]

    ТАНТАЛ (Tantalum) Та, химический элем. V гр. периодич. сист., ат. н. 73, ат. м. 180,948. В природе 2 изотопа сгаб, " Та и, возможно, радиоакт. Та (Г,у > 10 лет). Открыт А. Г. Экебергом в 1802. Содержание п, чем-ной коре 2-10 % по массе. Важисйише минералы группа таиталита — колумбита (Fe,Mn)(Nb,Ta)20, , лопарит (Na.( e,( a,.Sr)(Nb,Ti, l a)03, микролит (Na, a)r [c.558]

    НИОБИЙ (от имени Ниобы-дочери Тантала в др.-греч. мифологии лат. №оЫцт) КЬ, хим. элемент V гр. периодич системы, ат. н. 41, ат. м. 92,9064. В природе один стабильный изотоп КЬ. Поперечное сечение захвата тепловых нейтронов 1,15-10 м . Конфигурация внеш. электродных оболочек атома 45 4р 4степени окисления -Ь 5, ре е -Ь4, -Ь 3, -ь2 и -Н 1 энергии ионизации при последоват переходе от КЬ к КЪ равны соотв. 6,882, 14,320, 25,05, 38,3, 50,6, 103 и 124,6 эВ сродство к электрону 1,13 эВ работа выхода электрона 4,01 эВ электроотрицательность по Полингу 1,6 атомный радиус 0,145 им, ионные радиусы (в скобках указано координац. число) КЬ " 0,085 нм (6), КЬ + 0,086 нм (6), КЪ - 0,082 нм (6), 0,092 нм (8), КЬ= + 0,062 нм (4), 0,078 нм (б), 0,083 нм (7), 0,088 нм (8). [c.249]

    ТАНТАЛ (по имени героя др.-греч. мифологии Тантала, осужденного на вечную неутолимую жажду назван так из-за трудности получения его в чистом виде лат. Тап1а1ит)Та, хим. элемент V гр. периодич. системы, ат. н. 73, ат. м. 180,9479. В природе два изотопа стаб. Та (99,9877%) и радиоактивный Та (0,0123%, Р-излучатели, Т гЫО лет). Поперечное сечение захвата тепловых нейтронов 2,13-10" м . Конфигурация виеш. электронных оболочек атома 55 5р 5 р6л степень окисления 5, значительно реже +Л, Ч-З и -)-2 энергии ионизации Та - Та - Та соотв. 7,89 и 16,2 эВ электроотрицательность по Полиету 1,5 атомный радиус 0,146 нм, ионные радиусы, нм (в скобках указаны координац. числа) Та 0,086(6), Та 0,082(6), Та +0,078(6), 0,083 (7), 0,088(8). [c.494]

    Содержание Т. в земной коре 2,5-10- % по массе. Встречается в природе обычно вместе с ЫЬ. Входит в состав неск. десятков минералов, представляющих собой тантало-нио-баты или титано-тантало-ниобаты. Важнейшие из них-колумбит-танталит и пирохлор (см. Ниобий), микролит-разновидность пирохлора с содержанием 55-74% 7 20 . Т. содержится также в касситерите (см. Олово), при переработке к-рого Т. переходит в шлаки восстановит, плавки (11-15%, иногда до 30% ТазОз). Месторождения Т. имеются в Нигерии, Канаде, Бразилии, СНГ, Австралии, Заире, Малайзии, Мозамбике и Таиланде. Общие мировые запасы Т. в 1980 оценивались в 254 тыс. т, в пром. месторождениях-ок. 65, 3 тыс. т. [c.494]

    Ниобий Nb (лат. Niobium, старое название колумбий, СЬ). Н.— элемент V группы 5-го периода периодич. системы Д. И. Менделеева, п. н. 41, атомная масса 92,906. Имеет один стабильный изотоп Nb. Открыт в 1801 г. Ч. Хатчетом. В природе встречается в минералах совместно с танталом. Н.— светло-серый тугоплавкий металл, на воздухе устойчив. По химическим свойствам близок к танталу (отсюда название в честь древнегреческой богини Ниобеи—дочери Тантала). Проявляет в наиболее устойчивых соединениях степень окисления +5. В кислотах, за исключением плавиковой, нерастворим. Оксид ниобия NbaOs имеет кислотный характер. Н.—один из главных компонентов многих жаропрочных и коррозионно-стойких сплавов. Основные области применения Н. и его сплавов — атомная энергетика, радиоэлектроника и химическое аппаратостроение, реактивные двигатели и ракеты, вакуумная техника. [c.90]

    На кош танту скорости обмена лигавдов обычно оказывает влияние как природа иона металла, так и природа лигавда. Однако существуют общие свойства, которые можно связать с природой иона конкретного металла. Например, все реакции с участием Сг(Ш), Со(Ш), №(Ш) и Р1(1У) идут относительно медленно по сравнению с реакциями, в которых участвуют другие ионы металлов в тех же степенях окисления. [c.169]

    Нахождение в природе. Содержание в земной коре составляет 0,008%. Из 20 известных минералов олова промышленное значение имеют два касситерит (оловянный камень) ЗпОг и станнин (оловянный колчедан) Си2ре5п54 В виде примеси олово входит в состав полиметаллических руд, в минералы титана, ниобия, тантала. Оловянные руды с низким содержанием элемента предварительно обогащают. Концентраты содержат 40—70% олова. [c.107]

    Трудности обогащения руд ниобия и тантала обусловлены, во-первых, комплексом неблагоприятных факторов, связанных с природой самих руд, и, во-вторых, недостаточными возможностями или уровнем методов механического обогащения. К факторам первого рода прежде всего относятся высокое содержание во многих рудах мелких зерен тантало-ниобатов и их повышенная хрупкость. Обе эти особенности приводят к серьезным затруднениям и большим потерям в основных процессах обогащения, а иногда вызывают непреодолимые трудности в связи со сложностью и недостаточной изученностью технологии обогащения шламов. В ряде случаев положение усугубляется большим содержанием в рудах пер-вичных шламов. В отдельных рудах наблюдаются тончайшие вростки тантало-ниобатов в зернах других минералов и изоморфное вхождение тантала и ниобия в минералы-спутники. Кроме того, отрицательно влияет близость многих свойств тантало-ниобатов и тех минералов, от которых их приходится отделять. В каждом типе тантало-ниобиевых руд имеются трудноразделяемые сочетания минералов. [c.134]

    Ниобий и тантал Ниобия в природе примерно в 11 раз больше, чем тантала, но ниобий почти всегда встречается совместно с танталом в минералах, содержащих также Са, Ре, Мп и РЗЭ В этих минералах могут присутствовать также 5п, Т1 и 7г Сырьевыми источниками ниобия и тантала в СССР являются лопаритовые, пирохлоровые и танталитовые руды Лопарит — основной и уникальный вид не только ниобиевого и танталово-го, но и редкоземельного сырья Лопарит черного цвета, с краг-новато-бурой чертой Плотность 4,75—4,89 г/сж  [c.29]

    На рис. 9 представлена зависимость изменения краевого угла смачивания расплава оксида алюминия от температуры на поверхности ниобия, молибдена и тантала. Видно, что с увеличением температуры угол смачивания существенно уменьшается за счет указанных выше процессов. Общее правило выбора материала контейнера выглядит следующим образом химические силы связи материала контейнера должны принципиально отличаться по своей природе от химических сил связи кристачлизуемого вещества [18]. Например, кристаллы диэлектриков могут выращиваться [c.18]

    Электролит долн ен всегда соответствовать химическому составу металла и его природе. Так, растворы Na l пригодны для обработки сплавов на основе железа и никеля. Сплавы на основе вольфрама и карбида вольфрама практически не растворяются в растворах нейтральных солей, поэтому используют щелочные электролиты. Сплавы на основе ниобия и тантала обрабатываются только в растворах, содержащих ионы брома. [c.171]

    Ниобий N5 впервые получен в 1844 г. (Розе, Германия). Относительно редкий элемент, в природе находится (с примесью тантала) в виде минерала колумбита (ниобита) (ЫЬ2ре")0в. [c.413]

    Тантал Та открыт в 1802 г. (Экеберг, Швеция). По свойствам похож на ниобий в природе находится (с примесью ниобия) в виде минерала танталита (ТааМп")Ов. В свободном виде тантал — металл серого цвета с высокой температурой плавления. Относительно твердый, но легко прокатывающийся [c.413]

    При помощи масс-спектрометрпи можно зафиксировать частицы, образующиеся при ударе органической молекулы о нагретую металлическую проволоку или ленту. Опыт показывает, что в зависимости от природы молекулы и состояния металлической поверхности удар может быть либо эффективным, либо не эффективным даже при наиболее высокой температуре проволоки, при которой еще возможно использовать масс-спектрометр, т. е. при 1900° С. Только вольфрам и тантал, металлы, которые можно науглероживать, позволяют получить зону температур проволоки па несколько сотен градусов меньше 1900° С. Никель нельзя нагреть выше 1000°С (эффект Буша), платина очень летуча при температуре >1400° С. Было изучено четырнадцать органических соединений они выбирались таким образом, чтобы исследовать как молекулы с очень прочными связями (С—С в aHg), так и молекулы с относительно слабыми связями (С—J в HgJ и 0—0 в перекисях). [c.273]


Смотреть страницы где упоминается термин Тантал в природе: [c.160]    [c.123]    [c.175]    [c.373]    [c.301]    [c.17]    [c.508]    [c.383]    [c.64]    [c.133]    [c.147]    [c.636]    [c.558]   
Основы общей химии Т 1 (1965) -- [ c.466 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.479 ]

Основы общей химии том №1 (1965) -- [ c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте