Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры методом рассеяния света

    Рефрактометрические измерения при определении молекулярного веса полимеров методом рассеяния света.......". . . . 103 [c.8]

    Это уравнение представляет собой основу для определения молекулярных весов полимеров методом рассеяния света — одним из немногих абсолютных методов. [c.205]

    Однако принципиально другие средние значения получаются при измерении молекулярного веса полидисперсного полимера методом рассеяния света. Принцип этого метода состоит в том, что поскольку в растворе всегда возникают местные колебания концентрации (флуктуации концентрации), а показатель преломления зависит от концентрации, раствор приобретает оптическую неоднородность и в нем, как во всякой оптической неоднородной среде, наблюдается рассеяние света. Это рассеяние света в растворе электромагнитная теория света позволяет связать с молекулярным весом растворенного вещества. [c.282]


    Квадрат производной (1,87) входит в формулы для расчета молекулярного веса полимеров методом рассеяния света (см.гл. V). В связи с этим важным практическим применением появилось большое число работ по инкрементам показателей преломления полимеров в различных растворителях [34], возможности вычисления их по свойствам компонентов раствора [35, 36], а также — решения обратной задачи — определения свойств полимеров и их состояния в растворах по численным значениям инкрементов показателей преломления [37—40]. [c.31]

    Рефрактометрия при определении молекулярного веса полимеров методом рассеяния света [c.105]

    Квадрат производной (1.78) входит в формулы для расчета молекулярной массы полимеров методом рассеяния света (см. гл. V). В связи с этим важным практическим применением появилось большое число работ по инкрементам показателей преломления полимеров в различных растворителях [34, 42, 46], вычислению их [35, 36, 43—45], а также определению свойств полимеров и [c.29]

    РЕФРАКТОМЕТРИЯ ПРИ ОПРЕДЕЛЕНИИ МОЛЕКУЛЯРНОЙ МАССЫ ПОЛИМЕРОВ МЕТОДОМ РАССЕЯНИЯ СВЕТА [c.95]

    Кроме того, отсюда видно, что применяемое для определения степени ДЦР сочетание методов характеристической вязкости и дающего среднемассовое значение метода рассеяния света не обеспечивает количественной оценки частоты ДЦР при исследовании полидисперсного полимера и может быть использовано в этом случае-лишь для обнаружения Д1Д и качественной ее оценки каким-то средним значением числа узлов ветвления занимающим промежуточное положение между и т . Помня от этом, следует быть осторожным и при исследовании разветвленности фракций этим способом, ибо фракции полиэтилена всегда более или менее полидисперсны. [c.130]

    Рнс. 3.51. Зависимость молекулярной массы полимера, определенной методом рассеяния света, от времени полимеризации (по данным [36]). [c.363]

    Метод рассеяния света. Интенсивность рассеянного раствором полимера света определяется из выражения [c.41]

    Следует отметить, что применимость метода светорассеяния не ограничивается растворами. Метод рассеяния света можно использовать для получения информации относительно надмолекулярной структуры твердых полимеров. [c.207]

    Однако, так как возможно, что растущая цепь на любой стадии может скорее оборваться, чем присоединить следующую мономерную единицу, то уравнения (15) дают лишь средние значения. В любой реально идущей реакции полимеризации образуются полимеры различного молекулярного веса. Ожидаемая форма функции распределения по молекулярным весам люжет быть вычислена как для диспропорционирования, так и для соединения опыты по разделению полимеров но молекулярным весам дают хорошее совпадение с ожидаемыми результатами. Имеются методы определения молекулярных весов полимеров, включающие измерение таких общих свойств, как осмотическое давление, рассеяние света (мутность) и вязкость растворов. Поскольку осмотическое давление полидисперсной системы (системы с распределением по молекулярным весам) дает обычный или численно средний молекулярный вес, а рассеяние света — средний вес, определяемые соответственно как [c.123]


    При определении молекулярных масс полимеров методом Дебая следует также учесть, что параметр т отражает светорассеяние, обусловленное только рассеивающими частицами, и не связан с рассеянием света растворителем, т. е. является избыточной величиной  [c.147]

    Исследования опалесценции получили самостоятельное развитие для определения молекулярной массы и формы макромолекул полимеров. В этом случае используется флуктуационная трактовка рассеяния света, где в уравнения, описывающие это явление [например, (2.18)1, входит молекулярная масса. Эта связь выведена из зависимости осмотического давления от концентрации. Поскольку влияние межмолекулярных взаимодействий на осмотическое давление исчезает только при очень больших разбавлениях, необходимо получать данные для разбавленных растворов при нескольких концентрациях и результат [/ = / (1/%) или = = 7 (1/%)] экстраполировать к бесконечному разбавлению (с -> 0). Данный прием характерен для всех методов определения молекулярной массы, основанных на использовании осмотического давления, хотя при этом не всегда имеется уверенность в том, что при разбавлении растворов малоустойчивых высокомолекулярных веществ их молекулярная масса остается неизменной. [c.29]

    Для полимеров особое значение имеет малоугловое светорассеяние (в области углов до 30°), с его помощью можно получать информацию о кинетике структурообразования в полимерах, о деформации и разрушении их кристаллитов, а также о степени полидисперсности. Даже в случае гомогенных полимерных систем из-за частичной ориентации макромолекул и наличия флуктуации плотности метод малоуглового светорассеяния дает весьма полезную информацию. Например, изучая рассеяние света растворами полимеров, можно получать важную информацию о конформационных превращениях их макромолекул. [c.233]

    Растворы ВМС так же, как и лиофобные коллоиды, характеризуются светорассеянием, хотя величина рассеяния для них не так велика, как для лиофобных систем. Изменение величины рассеяния света используют в методе определения относительной массы полимеров. Метод основан на измерении мутности разбавленных растворов ВМС. При этом экспериментально измеряется коэффициент ослабления света в результате светорассеяния при прохождении его через слой раствора. [c.361]

    Микрозонд можно использовать для разнообразных образцов, включая органические и неорганические вещества, полимеры, биообъекты. Например, изучались неоднородности, образующиеся при затвердевании цемента, и другие твердофазные реакции проводился анализ крови на холестерин и состава функционирующих клеток, а также пятен на пластинах тонкослойной хроматографии. Метод позволяет определять следы вредных для здоровья ароматических углеводородов в пикограммовых количествах. К преимуществам микрозондового КР-анализа следует отнести резкое уменьшение рассеяния света и флуоресценции по сравнению с обычным КР-экспери-ментом. [c.778]

    Импульсно-индуцируемое критическое рассеяние — это метод измерения рассеяния света растворами полимеров в изотермических условиях (рис. 13.15). [c.210]

    Здесь /С и а — константы, определяемые путем измерения характеристических вязкостей ряда образцов полимера их молекулярные веса измерены другим методом, скажем с помощью рассеяния света. Поскольку значения /С и а известны для большого числа растворителей и различных температур, этот метод определения молекулярных весов находит широкое применение из-за весьма простой аппаратуры. [c.612]

    К ним относятся дифракция рентгеновских лучей, электронов, нейтронов и рассеяние света под большими и малыми углами для изучения надмолекулярной структуры наиболее широко применяют первую группу методов. В частности, методами рассеяния рентгеновского и нейтронного излучения можно изучать кинетику кристаллизации, морфологию получаемых сферолитных структур, сегрегацию структурных элементов на границах раздела фаз не только в индивидуальных полимерах, но и в их смесях [15]. [c.359]

    Методы исследования полимеров за последние 20 лет изменились мало из бесспорно новых можно назвать, пожалуй, лишь нейтронное рассеяние и неупругое рассеяние света. Сюда можно добавить Фурье-спектрометрию, поскольку тут уже, по уровню информативности и быстродействия, количество получаемой информации переходит в качество. Но почему никому не удалось наблюдать критические явления при переходах в полимерах (если не считать критической опалесценции растворов ниже критической температуры) Нет оснований полагать, что они слабы. В приборах ли тут дело, слабости самих эффектов (снова почему ) или просто в нежелании их искать  [c.400]

    Молекулярную массу полимеров определяют, изучая различные свойства их разбавленных растворов. Такими свойствами являются температуры замерзания и кипения, осмотическое давление, рассеяние света — мутность и другие, которые отличаются от указанных свойств чистых растворителей и заметно изменяются с изменением концентрации раствора полимера. Среднечисленную молекулярную массу М находят методами криоскопии, эбулио-скопии. и осмометрии, а среднемассовую молекулярную массу Мш — светорассеянием. [c.17]


    Метод светорассеяния является одним из основных абсолютных методов определения молекулярных масс полимеров. В нем измеряют интенсивность рассеяния света — мутность т при нескольких концентрациях и графической экстраполяцией на бесконечное разбавление раствора находят Мш  [c.18]

    Эти методы содержат чувствительные аналитические определения числа конечных групп в данном количестве полимера с использованием осмотического давления, ультрацентрифугирования или рассеянного света. [c.232]

    Метод измерения интенсивности рассеяния света в применении к растворам белков и полимеров стал одним из точных количественных методов, позволяющих определить такие важные характеристики, как молекулярный вес, размер и форму макромолекул, а также термодинамические параметры межмолекулярного взаимодействия в растворах [139—142]. [c.80]

    Из ф-ций и, используемых в химии, нанб. значение имеют ф-ция Лоренца-Лоренца, производная п по концентраций растворенных в-в (инкремент и) и дисперсионные ф-лы, включающие разности показателей преломления для двух длин воли. Инкременты л используют в жидкостной хроматографии и при определении мол. массы полимеров методом рассеяния света. Средняя дисперсия пр-п , частные дисперсии (пх - п Шх - и число Аббе (ио - ])/(% -п [c.261]

    Если полагают, что молекула представляет собой гибкий клубок, то такое заключение можно проверить, наблюдая сокращение размеров исследуемой молекулы в плохом растворителе и ее разворачивание при нагревании раствора в таком растворителе. Это свойство полимеров с гибкими молекулами уже рассматривалось в связи с изменением второго вириального коэффициента, и соответствующие данные, полученные осмометрическим методом и методом рассеяния света (при 0=0°), были представлены на рис. 63 и 82. Более прямой метод, позволяющий наблюдать данное явление, связан с измерением радиуса инерции молекулы в плохом растворителе. Типичные результаты, полученные Кригбау-мом и Карпентером , показаны ниже. Эти авторы исследовали влияние температуры на величину радиуса инерции молекул полистирола в циклогексане (молекулярный вес образца Мщ,=3,2 10 величины В для взятого образца приведены на рис. 82)  [c.357]

    К сожалению, в действительности это сделать довольно трудно. Метод рассеяния света, применяемый для определения размеров макромолекул, наиболее точен по ряду причин при измерениях под малыми углами рассеяния. Особенно важно проводить измерения света, рассеянного под малыми углами, при изучении растворов синтетических и биологических высокомолекулярных соединений молекулярного веса выше 3—5 млн. (например, дезоксирибонуклеиновая кислота). Однако до сих пор лишь некоторым авторам удалось провести измерения интенсивности света, рассеянного под углами до 16° (угол отсчитывается от направления падающего пучка). Серийные приборы для измерения рассеянного света работают обычно в диапазоне углов 30—150°. Поскольку подобная проблема важна и в собственно методе рассеяния света, можно отослать интересующегося читателя к монографии В. Н. Цветкова, В. Е. Эскина и С. Я. Френкеля Структура макромолекул в растворах (изд-во Наука , М., 1964), к главе Рассеяние света в растворах полимеров этой монографии, а также к оригинальным работам Бенуа, Зимма и Доти.— Прим, перев. [c.178]

    Проведенное выше обсуждение показывает, что метод Билла можно значительно улучшить, если определять параметры модельной функции распределения для фракций непосредственно путем измерения двух средних молекулярных весов. Такими средними молекулярными весами оказываются преимущественно среднечисловой молекулярный вес, определяемый по данным осмометрии (в случае низкомолекулярных фракций могут быть использованы методы эбулиометрии или криоскопии), и средневесовой молекулярный вес, определяемый по данным измерения характеристической вязкости. Если же точное соотношение между характеристической вязкостью и молекулярным весом не установлено, то определения средневесового молекулярного веса следует проводить с помощью метода рассеяния света. Выбор модельной функции распределения для фракции не является определяющим фактором. В равной мере можно использовать функции распределения, описываемые уравнениями (13-7), (13-11) и (13-16). Использование биномиальной функции в качестве модельной приводит к довольно сложным выкладкам, поскольку она содержит факториальный член. Если н е известна какая-либо конкретная функция, которая описывает распределение по молекулярным весам в исходном образце полимера, то эту же функцию вполне возможно применить и для описания распределения во фракциях. Численные расчеты по модифицированному методу Билла представлены в примере 3 приложения. [c.350]

    В том случае, если известно, что молекулярновесовое распределение полимера описывается определенной двухпараметрической функцией, полное распределение по молекулярным весам можно рассчитать по данным измерения двух средних молекулярных весов, например среднечислового молекулярного веса, измеренного методом осмометрии, и сродпевесового молекулярного веса, определенного методом рассеяния света. По величинам этих двух средних молекулярных весов нетрудно рассчитать параметры функции распределения и, следовательно, все распределение с помощью соотношений типа уравнений (13-8) и (13-9). Коэффициенты распределения также могут быть рассчитаны из величин этих средних молекулярных весов. [c.352]

    Как известно, M (i/=1) определяется по осмотическому давлению, Ai (i/=2)—методом рассеяния света, M (q= i)—методом седиментационного равновесия. Последний метод позволяет определить любой i7- peдний вес . Аналогично, по угловому распределению интенсивности света, рассеянного от раствора полимера, можно одновременно определить значения М и а также [c.165]

    В ней рассмотрены различные аспекты исследований структуры и свойств макромолекул в растворах, при которых используют метод рассеяния света. Мы не касаемся здесь проблем, возппкающих в теории рассеяния света низкомолекулярнымн жидкостями, достаточно подробно изложенных з ряде отечественных и иностранных монографий (сл1., например, [1, 8]). Теоретические вопросы метода изложены и обсуждены лишь в той мере, в какой они относятся к рассеянию света растворами полимеров и в связи со структурой макромолекул. [c.6]

    Если с принять за массовую концентрацию, то в знаменателе будет плотность в квадрате. Результаты анализа в данном методе могут иметь погрешности, обусловленные взаимодействием между макромолекулами в растворах. Для исключения этих погрешностей в определенпи молекулярной массы полимеров, мнцеллярной массы ПЛВ или просто массы частиц осмотически активных золей вместо метода сравнения применяют абсолютный метод Дебая. Для выражения интенсивности рассеянного света по этому методу используют уравнение Эйнштейна, получаемое на основе учета флуктуаций оптической плотности, возникающих в результате изменения осмотического давления и концентраций. Так как основной причиной рассасывания флуктуаций концентраций является изменение осмотического давления, то это дает возможность связать соотношения для рассеяния света и осмотического давления. Используя уравнение осмотического давления до второго внри-ального коэффициента Л2, учитывающего мел<частичное взаимодействие, Дебай получил следующее соотношение между мутностью раствора полимера, его концентрацией и молекулярной массой полимера  [c.264]

    Определение молекулярного песа методом светорассеяния. Световые лучи, проходя че-рез растворы полимеров, вы .ывают свечение с неизменной длиной волны, ио в направлениях, отличающихся от первоначального направления пучка света. Это явление называют с в е т о р а с сеяние м. Интенсивность проходящего света зависит от концентрации и величины макромолекул полимера, рассеивающих свет. На свойстве растворов полимеров рассеивать свет основано определение их молекулярного веса. Этот метод является одним из наиболее точных методов определения молекулярного веса Интенсивиость рассеянного света выражают через величинх мутности т, определяемую как долю первичного пучка, рассеянную во всех направлениях при прохождении светом в растворе пути длиной 1 см. Если при прохождении л см начальная интенсивность света / уменьшится до величины /. то мутность определяется из соотношения  [c.82]

    Оптический метод. Одним т важнейших методов определения молекулярных весов является измерение рассеяния света, проходящего через раствор полимера. Наиболее распространен метод Дебая, основанный на измерении мутности разбавленных растворов высокополимеров. Уравнение Дебая с поправкой Ь (аналогично уравнению Вант-Гоффа для осмометрич ского метода) имеет вид  [c.71]

    Широко примен. эффект селективного рассеяния света холестерич. Ж. к. Шаг спиральной структуры этих Ж, к, обусловливает избират, рассеяние (отражение) света в видимом диапазоне длин волн. При изменении т-ры изменяется шаг и, следовательно, макс, длина волны рассеянного света и цвет кристалла, Т, о,, возможно измерять т-ру по изменению цвета Ж. к., контактирующего с пов-стью к.-л. тела, Жидкокристаллич, термография использ. для неразрушающих методов контроля, а также в медицине для диагностики нек-рых сосудистых заболеваний, опухолей и др. Холестерич, Ж. к. примеи. для создания цветных дисплеев, термометров, ювелирных изделий. Разработаны способы получения термотропных жидкокристаллич. полимеров, что открывает перспективы для создания новых типов материалов. [c.203]

    Благодаря развитию современных приборов с лазерными источниками возбуждения получение спектров КР превращается в стандартную процедуру. Путем сравнения спектров комбинационного рассеяния света, поляризованного параллельно и перпендикулярно к оси ориентированных макромолекул полимеров, удается вьщелить линии, чувствительные к изменению ориентации различных фрагментов макромолекул [36]. Метод КР с Фурье-преобразованием и возбуждением в ближней ИК области применяется [37] для определения цис-, транс- и винильных звеньев в полибутадиене, стереорегулярности полистирола, степени кристалличности полимеров и т.д. [c.208]

    Термодинамические методы — отнюдь не единственный путь определения молекулярной массы. Широко используют также методы, основанные на рассеянии света и на измерении вязкости. Первый из них использует тот факт, что направление и интенсивность света, рассеиваемого раствором полимера, есть функция размеров и формы рассеивающих свет частиц. Этот гетод позволяет определить ср днемассовую молекуля рную массу Му.. [c.317]

    Более интересно применение методов, основанных на рассеянии света, для определения средней молекулярной массы полимеров в растворах. Для расчетов необходимо знать мутность, концентрацию, показатель преломления, длину волны, производную показателя по концентрации и так называемый второй вириальный коэффициент, являющийся мерой неиде-альности раствора. Использование метода светорассеяния ограничено размерами молекул они должны быть меньше длины волны. [c.317]


Смотреть страницы где упоминается термин Полимеры методом рассеяния света: [c.339]    [c.235]    [c.84]    [c.376]    [c.333]   
Основы органической химии Ч 2 (1968) -- [ c.416 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры методом ГПХ

Рассеяние света



© 2025 chem21.info Реклама на сайте