Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анизотропия двойного лучепреломления

    Важное значение для изучения оптических свойств полимеров, проявляющих свою анизотропию и на молекулярном, и на надмолекулярном уровнях, имеет использование явления двойного лучепреломления. В некоторых полимерах пучок света, пройдя через оптически анизотропную среду, распадается на два луча (обыкновенный и необыкновенный), поляризованных в двух взаимно перпендикулярных плоскостях и распространяющихся с различными скоростями. [c.234]


    Мерой степени ориентации полипропиленового волокна может лужить разность показателей преломления, измеренных в двух ззаимно перпендикулярных направлениях, т. е. величина так называемого двойного лучепреломления. Метод основан на возник-гювении у ориентированных полимеров оптической анизотропии и, как уже упоминалось выше, устанавливает среднюю степень ори-гнтации цепных молекул.  [c.89]

    Жидкокристаллические термоиндикаторы представляют собой органические соединения, одновременно обладающие свойствами жидкости (текучесть) и твердого кристаллического тела (анизотропия, двойное лучепреломление). При изменении температуры жидкий кристалл меняет свой цвет. Жидкие кристаллы эффективно используют при исследовании температур в электронных схемах для обнаружения дефектов типа нарущения сплошностей. Они выпускаются в виде пленок и жидких растворов. [c.536]

    КЕРРА ЭФФЕКТ электрооптический, возникновение двойного лучепреломления в оптически изотропных в-вах под действием однородного электрич. полн. При этом свет оказывается эллиптически поляризованным сдвиг фаз между обыкновенным и необыкновенным лучами определяется из выражения а=л ВхЕ , где х — длина пути луча в в-ве, Е — напряженность поля, 13 — постоянная Керра. Наличие К. э. объясняется преим. ориентацией молекул в направлении поля, обусловленной анизотропией поляризуемости. В химии используют молярную постоянную Керра тК (отнесена к 1 молю в-ва). Значение тК можио рассчитать, зная главные значения тензора поляризуемости и проекции дипольного момента молекулы на главные оси эллипсоида поляризуемости. Сопоставляя расчетные значения с экспериментальными, на основе аддитивной схемы определяют конформацию молекул. [c.253]

    Некоторые жидкости при течении обнаруживают-оптическую анизотропию, выражающуюся в появлении эффекта двойного лучепреломления, или двупреломления. Как известно из физики, эффект двупреломления заключается в том, что луч света, падающий на одноосный кристалл, разделяется на два луча, идущие по выходе из кристалла параллельно первоначальному направлению. Один из этих лучей, называемый обыкновенным, следует обычным законам преломления света. Для- Другого, необыкновенного луча показатель преломления в зависимости от угла, составляемого с оптической осью кристалла, может иметь различные значения. . [c.43]


    Исследования оптической анизотропии (двойное лучепреломление) тех же самых систем показало, что ориентация молекул полимера перпендикулярно поверхности пленки и параллельно направлению оси основного диффузионного потока увеличивается в процессе сорбции —диффузии. [c.226]

    Одним из основных способов улучшения механических свойств линейных полимеров является их вытяжка. Чтобы зафиксировать ориентированное состояние, полученное в результате вытяжки, полимер охлаждают до температур меньших температуры стеклования. Возникающая анизотропия свойств полимеров отражает анизотропию в ориентации макромолекул. Поэтому, измеряя величину анизотропии каких-либо свойств полимера можно получать информацию о степени ориентации его макромолекул. Одним из наиболее чувствительных индикаторов является двойное лучепреломление (оптическая анизотропия) значение коэффициента двойного лучепреломления Лп часто используется в качестве меры ориентации полимера. Установлено, что Дге линейно связан со средним квадратичным отклонением ориентации макромолекул от изотропного состояния. [c.187]

    Жидкость, содержащая анизотропные ориентированные частицы, обладает двойным лучепреломлением — она подобна двухосному кристаллу. Двойное лучепреломление измеряется в направлении г, параллельном оси динамооптиметра. Конечная причина двойного лучепреломления — анизотропия поляризуемости частицы. Для твердых эллипсоидов вращения с отношением большой и малой осей, равным Ь, теория дает для двойного лучепреломления [c.164]

    Основными методами исследования ориентации полимеров являются рентгенографический, метод двойного лучепреломления и довольно распространенный в настоящее время метод инфракрасной спектроскопии в поляризованном свете. В последние годы для определения степени ориентации используют также анизотропию диамагнетизма [98] и анизотропию набухания [99]. [c.86]

    Для проведения корреляции между молекулярной ориентацией и данными двойного лучепреломления необходимо понять причину появления молекулярной анизотропии. [c.206]

    Ориентирующее действие на дипольные молекулы воды гидрофильных подложек должно приводить к анизотропии прослоек и, как следствие, к их двойному лучепреломлению (ДЛ). Измерения ДЛ были выполнены для тонких прослоек воды, содержащихся в осмотически набухших пластинчатых частицах глины (Ма-монтмориллонит) [36]. Среднюю толщину водных прослоек Л, изменявшуюся при приведении образца в контакт с растворами ЫаС различной концентрации, определяли [c.13]

    Практически, однако, оптическая анизотропия коллоидных систем может определяться одновременно обоими факторами тогда при уравнивании показателей преломления частиц и среды двойное лучепреломление полностью не исчезнет и лишь уменьшится до некоторой минимальной величины, которая и будет характеризовать собственную анизотропию частиц. [c.64]

    Оптическая и геометрическая анизотропия коллоидных частиц исследуются методами поляризационной оптики, среди которых основное значение имеет изучение двойного лучепреломления, как собственного, обусловленного оптической анизотропией частиц, так и двойного лучепреломления формы, зависящего от ориентированного расположения асимметричных частиц. Метод двойного лучепреломления при течении особенно широко используется для определения коэффициента вращательной диффузии (III. 9) и линейных размеров вытянутых частиц для той же цели иногда изучают поляризацию флуоресценции. [c.72]

    В большинстве случаев оптическая анизотропия тел является результатом усреднения, обусловленного хаотическим расположением составляющих их молекул. Однако под влиянием внешних воздействий возможна перегруппировка анизотропных элементов, приводящая к макроскопическому проявлению оптической анизотропии. Поэтому у многих тел, в частности у полимеров, при деформации можно наблюдать явление двойного лучепреломления. Пленки полимеров, предварительно подвергнутые растяжению, обнаруживают двойное лучепреломление, величина которого повышается с увеличением приложенного напряжения. Некоторые исследователи связывают двойное лучепреломление с образованием в полимере при его растяжении кристаллической решетки. Однако двойное лучепреломление у полимера свидетельствует лишь об ориентации цепей, но не о кристаллизации. [c.204]

    Экспериментальными доказательствами анизотропии деформирования полимеров являются двойное лучепреломление и расщепление линии ЯМР. Показано [32], что фундаментальная модель для высокополимеров - идеальная гауссова цепь - не дает расщепления линий в спектре ЯМР, а вызывает только уширение линии при деформации полимера, что создает предпосылки для выдвижения усовершенствованных моделей. Разработано аналитическое выражение для второго момента формы линии ЯМР в зависимости от степени растяжения образца. [c.276]


    При одноосном и двухосном растяжении полимер обнаруживает двойное лучепреломление [105, р. 281]. Это связано с тем, что поляризуемость сегмента вдоль и поперек цепи различна. Оптическая анизотропия цепи пропорциональна (o i —0С2), где Oil и 2 поляризуемости сегмента и двух направлениях. Когда цепь распрямляется, оптическая анизотропия стремится к л(ос1 —оса). При действии напряжения на максимально вытянутые (относительно их поворотно-изомерного состава) цепи возникает деформация валентных углов и растяжение химических связей, оптическая анизотропия при этом продолжает расти. [c.168]

    Б. В. Дерягин и Грин-Келли [40, 70] обнаружили явление двойного лучепреломления в граничных слоях воды и, следовательно, оптическую анизотропию тонких слоев воды, содержащихся в набухающем водном растворе Ма-замещенном монтмориллоните. Разность показателей преломления была значителньо больше, чем мог бы дать эффект Керра. Впоследствии удалось обнаружить двойное лучепреломление в граничных слоях нитробензола вблизи активированной поверхности стекла. [c.72]

    Мы ВИДИМ, что Ап обращается в нуль при к = О (т. е. при Ь = 1, сфера) и при Я) = аг (изотропия поляризуемости). Таким образом, двойное лучепреломление в потоке выражается произведением двух факторов — оптического и механического. Второй фактор существенно зависит от градиента скорости д. Первый определяется анизотропией поляризуемости — аг. В интересующем нас случае а] — аг — эффективная анизотропия, состоящая из двух вкладов — внутренней анизотропии Ащ и анизотропии формы Да  [c.165]

    Эффект Керра, т. е. двойное лучепреломление, возникающее ь электрическом поле, также позволяет получить сведения о внутренней анизотропии макромолекулы и об анизотропии ее формы. Однако биополимеры — полиэлектролиты, т. е. макро- [c.166]

    Целлюлозные волокна обладают значительной анизотропией свойств, что доказывается большим значением двойного лучепреломления. Анизотропия свойств является следствием преимущественной ориентацией кристаллических участков, а также цепей, находящихся в аморфных областях, вдоль оси волокон. [c.22]

    Возврашаясь к влиянию боковых заместителей, необходимо отметить, что параметры а с увеличением объема заместителя принимают аномально низкие значения и становятся меньше 0,5 для продуктов высокотемпературной поликонденсации. Это, вероятно, происходит вследствие увеличения плотности макромолекулярного клубка, и полимер с очень большим боковым заместителем (например, полиарилат Д-10 с бифениленовым радикалом) в растворе подобен разветвленному полимеру Такой же эффект наблюдалсяпри изучении анизотропии двойного лучепреломления в растворе полиметилметакрилата с разными заместителями. [c.135]

    Двойное лучепреломление в потоке можег возникать вследствие разных причин. Одной 113 них может (" ыть оптическая анизотропия частиц дисперсной фазы. В том случае частицы предстаиляют собой маленькие кристаллики. Двойное лучепреломление может проявляться и в системах с изотропны.мн аиизометрнчески- [c.268]

    Выше отмечалось, что интенсивность света, рассеянного анизометрической частицей, сильно зависит от ее ориентации. Эффект ориентации наиболее отчетливо выражен в случае стержнеббразных частиц и менее заметен для частиц пластинчатой формы. Например, если стержнеобразная частица ориентирована перпендикулярно плоскости, образуемой падающим лучом и линией наблюдения, то рассеяние будет более интенсивным, чем в отсутствие ее ориентации (т. е. при хаотическом ее вращении). Если же такая частица ориентирована вдоль направления наблюдения, то интенсивность рассеяния света будет намного слабее, чем в отсутствие ее ориентации [см. (2.8) и (2.9) ]. При ориентации частиц возникает в какой-то мере упорядоченная структура, напоминающая кристаллическую. При этом даже если каждая частица, показатель пре ломления которой отличается от показателя преломления среды, в отдельности и не обладает собственной оптической анизотропией, система в целом становится анизотропной и проявляет двойное лучепреломление. Если же, кроме того, вещество частиц само обладает анизотропией, то вызванный этим эффект накладывается на предыдущий. [c.30]

    В результате ориентационной вытяжки линейных аморфных полимеров возникает анизотропия их физических свойств вдоль и поперек направления вытяжки. При этом для различных свойств подобная анизотропия выражена по-разному. Например, для двойного лучепреломления и механической прочности анизотропия довольно значительна, а для модуля упругости — гораздо слабее, если только полимер не доведен до сверхориентиро-ванного состояния, когда начинается фибриллизация. Впрочем, фибриллизация чаще наблюдается у некристаллизующихся полу-жестких полимеров и всегда — у кристаллизующихся. Кроме того, анизотропия свойств зависит от типа полимера- По сравнению с кристаллическими аморфные полимеры при вытяжке ориентируются плохо даже при больших степенях вытяжки остается довольно большой разброс направлений ориентации сегментов макромолекул. [c.193]

    С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентаций электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной мрпл описаны в литературе [9.6 50]. [c.234]

    Оптическая анизотропия среды может быть обусловлена анизотропией составляющих ее частиц (атомов или молекул) и характером их взаимного расположения. Так, молекула водорода оптически анизотропна, но в результате беспорядочного расположения молекул газообразный водород ведет себя как оптически изотроп-пая среда. В большинстве случаев оптическая изотропия тел является результатол усреднения, обусловленного хаотическим расположением составляющих нх молекул, Одиако под влияниел внешних воздействий возможна перегруппировка аиизотроппьт) элементов, приводящая к макроскопическому проявлению оптической анизотропии. Поэтому у многих тел, в частности у полимеров, при деформации можпо наблюдать явление двойного лучепреломления. [c.122]

    Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (наттример, органические вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию. Особенно сильно двойное лучепреломление ггроявлястся при течении золей с палочкообразными час1и-цами и растворов высокомолекулярных соединепий. [c.481]

    Одновременно с этим можно йыяснить, является ли двойное лучепреломление следствием собственной оптической анизотропии частиц н.ти обусловлено только эффектом формы. Для этого следует воспользоваться формулой Винера, выведе1[1[0й для частиц пал очкообразно 11 формы с показате,тсм прело.млення /г, взвешен-[[ых Б жидкости, показатель преломления которой щ  [c.483]

    Теория показывает, что при наличии собственной анизотр-опии двойное лучепреломление должно наблюдаться даже при нулевоя градиенте скорости. Поэтому, экстраполируя кривую An f у(0) к нулевому градиенту скорости, можно определить наличие кли отсутствие собственной анизотропии. Такая экстраполяция для растворов полиизобутилена приводит к значению АпфО, т. е. молекулы полиизобутилена обладают собственной анизотропией. Однако двойное лучепреломление, обусловленное ею. составляет ничтожную долю общего двойного лучепреломления. [c.484]

    Пиннок и Вард [61 пришли к заключению, что число мономерных звеньев в сегменте аморфной фазы в среднем равно 2,9, а число мономерных едишш макромолекулярной цепи между узлами сетки, представляющих собой наиболее концентрированные сосредоточения межмолекулярных сил, 23,4 для полиэфира с молекулярной массой 18 ООО и 13,5 — для полиэфира с молекулярной массой 28 ООО. Эти данные свидетельствуют о большой гибкости макромолекулы полиэтилентерефталата в аморфной фазе. Косвенным подтверждением этому могут служить исследования двойного лучепреломления в потоке для растворов полиэтилентерефталата. Из данных по анизотропии цепей полиэтилентерефталата [7] длина сегмента Куна может быть приближенно оценена величиной 1 нм, что свидетельствует о значительной свернутости макромолекул полиэтилентерефталата в растворах. Для сравнения укажем, что длина сегмента Куна для полистирола равна 2,0 нм. [c.102]

    Ориентированные полимеры, в отличие от неориентированных, характеризуются оптической анизотропией, т. е. двойным лучепреломлением. Величина последнего у слабоориентированного полипропиленового волокна почти в десять раз меньше, чем у ориентированного (значение пу—п для невытянутых волокон 0,0042, для вытянутых 0,0310). [c.83]

    В литературе [4] описаны различные методы исследования структуры пленок, ориентированных в двух взаимно иерпенд1 ку-лярных направлениях (рентгеновская дифракция, двойное лучепреломление, инфракрасный дихроизм, рассеяние света, ядерный магнитный резонанс, магнитная анизотропия, а в известной степени таклсе изучение механических и электрических характеристик). [c.280]

    В химии рассматривают квадрупольное взаимод. атомов, молекул на сравнительно больших расстояниях. Энергия такого взаимод. для частиц, не обладающих дипольным моментом, убывает с увеличением расстояния Я пропорционально 1/Л (см. Поляризуемость). К. м. молекул м. б. определены экспериментально (напр., по компонентам мол. 3-фактора, по главным моментам инерции и анизотропии магн. восприимчивости, по величинам двойного лучепреломления при наличии градиента электрич. поля), а также м. б. рассчитаны методами квантовой механики. Так, для молекулы фторацетилена РС=СН Q = 3,96, 2 = буу = и98-10 единиц заряда СГС-см (ось г совпадает с осью молекулы), для молекулы СО 2, = — 4,3, 6 = б,, = 2,15-10 (в тех же единицах). [c.361]

    Длн оценки структурной анизотропии тонких прослоек воды и других жидкостей Грин-Келли и Дерягиным [62, 63] был применен метод, основанный на измерении изменения двойного лучепреломления (ДЛ) монтмориллонита при его набухании в соответствующих жидкостях. На рис. VII.10 приведена схема установки для измерения разности хода в направлении оси с глинистого агрегата. Глинистый блок помещался в углублении предметного стекла. После наливания жидкости сверху надвигалось покровное стекло. После Црекращения набухания блока (через время до 48 ч) компенсатором Сенармона поляризационного микроскопа в свете D-линии натрия измерялась разность хода и вычислялось двойное лучепреломление В образца набухшей глины. Для вычисления отсюда ДЛ пленок внутрикристаллического набухания АВ была использована формула Винера, позволяющая вычислить В в функции степени набухания S в предположении, что жидкие прослойки сохраняют изотропные оптические свойства объемной фазы. [c.204]

    Расстояния между частицами в кристаллах имеют порядок размеров самих частиц. Потенциальная энергия частиц больше их кинетической энергии, и единственная форма их движения — колебания около положения равновесия. Частицы размещены в узлах решетки, т. е. в определенных точках пространства. Поэтому говорят, что здесь наблюдается дальний порядок. Благодаря наличию кристаллической решетки твердые тела обладают анизотропией свойств, т. е. их свойства зависят от выбранного направления. К тгиким свойствам относятся тепло- и электропроводность, напряжение сдвига, показатель преломления, двойное лучепреломление и др. [c.286]


Смотреть страницы где упоминается термин Анизотропия двойного лучепреломления: [c.484]    [c.242]    [c.90]    [c.267]    [c.268]    [c.484]    [c.503]    [c.64]    [c.481]    [c.483]    [c.484]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.204 , c.206 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.204 , c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Анизотропия

Анизотропия - поляризуемости. Вызываемое ею явление деполяризации рассеянного света и явление электрического двойного лучепреломления (эффект Керра)

Двойное лучепреломление

Двойное лучепреломление в потоке и оптическая анизотропия цепных молекул

Двойное лучепреломление двойная

Оптическая анизотропия, асимметрия формы и размеры частиц некоторых белков по данным двойного лучепреломления в потоке и по гидродинамическим данным

Характеристическая величина двойного лучепреломления и оптическая анизотропия полимера

Характеристическая вязкость, двойное лучепреломление формы, асимметрия и анизотропия макроформы макромолекул полибутилметакрилата в изопропаноле при различных температурах



© 2025 chem21.info Реклама на сайте