Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной слой исследованиях

    В дальнейшем [541] самопроизвольное а— - -превращение было обнаружено нами при исследовании растворов ПАВ неионного типа гомологического ряда алкилоламидов жирных кислот с числом углеводородных атомов от 9 до 11. Как оказалось, динамическое равновесие между а- и р- пленками существенно зависит от концентрации ПАВ в системе. Априори можно полагать, что при добавлении к воде алкилоламидов жирных кислот заметно изменялась молекулярная составляющая расклинивающего давления. В предварительно проведенных опытах [541] была установлена специфичность поведения ПАВ с различной длиной углеводородной цепи. В связи с возможным влиянием ПАВ на свойства двойных ионных слоев [542] представляло интерес изучить корреляцию поверхностной активности молекул гомологического ряда ПАВ с электрокинетическими Характеристиками двойных слоев для границ жидкость — газ и твердое тело — жидкость, с одной стороны, и с устойчивостью смачивающих пленок, полученных из растворов алкилоламидов жирных кислот, — с другой. [c.200]


    Как показали дальнейшие исследования, электрокинетические явления тесно связаны со свойствами поверхности и структурой двойного электрического слоя на межфазной границе. Вследствие той важной роли, которую они играют в коллоидных системах, их рассмотрению посвящена отдельная глава. В этой главе будут изложены и основные представления в области электрохимии двойного слоя, возникшие в большой степени в результате исследования электрокинетических явлений. [c.134]

    В 1924 г. Штерн отметил, что ионы, образующие диффузную часть двойного слоя, распределяются в ней не только под действием сил электрического поля, но также и под влиянием молекулярных сил взаимодействия с внешней фазой, особенно в непосредственной близости от межфазной поверхности. Как показывают исследования адсорбции, силы притяжения между ионами в растворе и внешней фазой могут быть значительными и приводить к образованию адсорбционного слоя, который обычно яв- [c.152]

    Исследование влияния поверхностно активных веществ на строение двойного слоя и на кинетику электродных процеосов лучше всего осуществляется снятием электрокапиллярных кривых, позволяющих определить точку нуле-пого заряда и путем исследования изменения емкости двойного слоя в зависимости от поляризации. [c.102]

    XV-Як- Эта величина должна быть постоянной для данной ячейки. После того, как диафрагма сформирована, через нее пропускают контрольный (0,1 н.) раствор до установления постоянной величины сопротивления по которому находят константу ячейки с диафрагмой С . Затем отмывают диафрагму водой и обрабатывают исследуемым раствором. Если контрольным служил раствор К.С1, а исследование проводится в другом электролите, необходимо предварительно обработать диафрагму 0,1 н. раствором исследуемого электролита (для вытеснения ионов К или С1 из двойного слоя), а затем отмывать водой. [c.218]

    Впервые описанным методом был исследован двойной электрический слой на платиновом электроде. Опыты проводили при различных потенциалах, что позволило получить зависимость заряда поверхности от потенциала (точки на рис. 7). Потенциал, при котором не происходит изменения состава раствора при образовании двойного слоя в растворе с избытком посторонней соли, является потенциалом нулевого заряда , 0- Данным методом можно определять изменение концентрации не только ионов НаО+, но и других ионов, для которых имеются надежные аналитические методы, например ионов Вг , 1 и др. [c.31]


    Рассмотренные теоретические соотношения представляют интерес не только мри изучении строения двойного электрического слоя на типичных полупроводниках. Большая группа металлических электродов, таких, как алюминий, тантал, ниобий, титан и др., в водных растворах покрывается толстым слоем фазовых окислов, обладающих полупроводниковыми свойствами. Поэтому изучение строения границы полупроводник — раствор может оказаться полезным при исследовании строения двойного слоя на таких электродах. [c.142]

    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. Другой важной проблемой является построение количественной теории поверхностного слоя при хемосорбции ионов, сопровождающейся переносом заряда. Явления переноса заряда при адсорбции широко распространены и играют существенную роль в кинетике электродных процессов. Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.389]

    Работы по созданию химических источников тока, использующих неводные растворители, по электросинтезу ряда веществ и электроосаждению металлов в неводных средах вызвали интерес к исследованию структуры двойного слоя и кинетики реакций в неводных растворителях. Измерения в неводных растворах позволяют решить и ряд теоретических проблем, например выяснить роль взаимодействия металл — растворитель, роль адсорбции атомов водорода и кислорода в структуре двойного слоя и др. [c.389]

    Для современных работ в области электрохимической кинетики характерен переход от традиционного ртутного электрода к твердым электродам. Строение двойного слоя и кинетика электрохимических реакций на твердых электродах зависят от ориентации граней кристалла на поверхности и от предварительной механической и термической обработки металла. Поэтому все больший интерес вызывают электрохимические исследования на разных гранях монокристаллов [c.389]

    При анализе результатов релаксационных измерений обычно постулируется независимость протекания процесса заряжения двойного слоя и фарадеевского процесса. Это предположение, справедливое при отсутствии адсорбции исходного вещества и продуктов реакции на поверхности электрода, может не оправдываться, если электродные процессы осложнены адсорбционными явлениями. Чтобы определить границы применимости указанного постулата и наметить пути исследования электродных процессов в тех случаях, когда он не выполняется, необходимы дальнейшие исследования. [c.390]

    Для современных работ в области электрохимической кинетики характерен переход от традиционного ртутного электрода к твердым электродам. Строение двойного слоя и кинетика электрохимических реакций на твердых электродах зависят от ориентации граней кристалла на поверхности и от предварительной механической и термической обработки металла. Поэтому все больший интерес вызывают электрохимические исследования на разных гранях монокристаллов и на электродах, подвергнутых разнообразным механическим, термическим и т. п. воздействиям. Монокристаллические электроды удобны для теоретического исследования. Так как на практике используются поликристаллические электроды, то предстоит выяснить и изучить закономерности, возникающие при переходе от монокристаллов к поликристаллам. [c.404]

    В отличие от жидкой поверхности поверхность твердого электрода, особенно поликристаллического, оказывается энергетически неоднородной, что затрудняет исследование и истолкование закономерностей структуры двойного слоя и кинетики электродных процессов. [c.16]

    Значительную роль сыграли исследования электрокинетических явлений в построении современной теории скачка потенциала на границе фаз. Опыты с частицами угля и платины позволили выяснить, в какой мере электролитические явления коллоидных систем связаны с величиной общего скачка потенциала на границе фаз. Так, например, старые представления Нернста, Гельмгольца и других не могли дать ответа на вопрос о том, почему при возникновении двойного электрического слоя на границе фаз, кроме термодинамического потенциала <р, появляется электрокинетический потенциал Более точное количественное изучение коллоидных систем и строения двойного слоя позволило не только обнаружить, но и вычислить величину -потенциала. [c.232]


    Важной и до сих пор нерешенной проблемой является установление количественного соотношения между термодинамическим потенциалом фо (или потенциалом плотной части двойного слоя фй) и электрокинетическим потенциалом В зависимости от толщины слоя повышенной вязкости Д вблизи поверхности твердого тела электрокинетический потенциал может приближаться к значению потенциала адсорбционного слоя противоионов фй или быть меньше его. В некоторых случаях (например, для кварца), как было показано, в частности, в исследованиях Д. А. Фридрихсберга и М. П. Сидоровой, отличие электрокинетического потенциала от термодинамического может быть связано с гидратацией ( набуханием ) поверхности твердого тела и образованием трудно деформируемого гелеобразного слоя, на который приходится часть падения потенциала. Различие ф - и -потенциалов может быть также связано с микрошероховатостью поверхности твердого тела — наличием на ней ступеней роста, выходов дислокаций и других дефектов (см. гл. IV). [c.191]

    В последующих исследованиях ряда авторов (Дж. Овербек, Ф. Буф, Д. Генри, С. С. Духин) рассмотрено влияние деформации двойного слоя при наложении внешнего электрического поля (эффекта релаксации) на скорость электрофоретического движения частиц оказалось, например, что при значениях хг, близких к единице, в присутствии трехзарядного противоиона деформация двойного электрического слоя вызывает уменьшение коэффициента k примерно на одну четверть. Все эти поправки должны учитываться при определении -потенциала методом электрофореза. [c.193]

    Исследование влияния приложенной разности потенциалов на поверхностное натяжение границы раздела фаз удобнее всего проводить на идеально поляризующейся поверхности жидкого металла (обычно ртути) в водном растворе электролита. Очень важно, что при этом одновременно измеряются разность потенциалов фаз (по сравнению с каким-либо стандартным электродом) и поверхностное натяжение межфазной а поверхности (обычно по максимальной высоте столба ртути, удерживаемой силой поверхностного натяжения в капилляре) вместе с тем возможно определе- ние и плотности заряда двойного слоя по току, переносимому вытекающей по каплям ртутью, при известной их по-верхности. [c.215]

    Как уже отмечалось, на границе между проводником первого рода и электролитом возникает двойной электрический слой. Однако рассмотренный выше (см. рис. XX, 1) двойной слой, который на плоском электроде образует плоский кондеп-сагор, является лишь упрощенной моделью. Такая модель бь[ла впервые предложена Гельмгольцем в 1879 г. Более поздние исследования показали, что ионы двойного электрического слоя принимают участие в тепловом движении, которое, в зави-  [c.537]

    Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189]

    Так как трудно получить монодисперсные кап. необходимого размера, имеется очень мало исследований электровязкостных эффектов в эмульсиях. Ван дер Ваарден (1954) определил вязкости ряда эмульсий М/В, стабилизированных сульфонатами натрия, в которых величина не превышала 0,205 мкм (табл. 1 МЗ). Максимальная концентрация примененного эмульгатора была необычно большой, так как составляла — 12% общего веса эмульсии. При более высоких концентрациях эмульгатора 11отн существенно отклонялась от теоретических значений, вычисленных по уравнению (IV.206). Увеличение было также намного большим, чем предсказывалось уравнениями (IV.249) и (IV.250). Поэтому сделано заключение, что расхождение не могло быть результатом искажения диффузного двойного слоя вокруг капель. Полагали, что сильно ионизированный эмульгатор, адсорбированный на поверхностп капель, создает электрическое поле высокого напряжения 10 —10 в см и слой молекул воды прочно связан с ним. Толщина слоя воды, как показано кажущимся увеличением Дг была 0,0014—0,0037 мкм, досиггая почти устойчивого значения при более высоких концентрациях эмульгатора. [c.296]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    Из более поздних работ интересны исследования Малша по влиянию электрического поля на величину диэлектрической проницаемости. Малш находит, что поле напряженностью до 2,5-10 в/см может заметно влиять на диэлектрическую проницаемость воды ( 1%). При увеличении напряженности поля и приближении его к градиентам, имеющимся в двойном слое (- 10 в/см), наблюдается сильное уменьшение диэлектрической проницаемости. Так, при полях 5-10 в/см диэлектрическая проницаемость падает до 50% своей величины. Малш дает следующую эмпирическую формулу по результатам своих экспериментов  [c.90]

    Остановимся немного на рассмотрении явления потенциала седиментации, так как данных по исследованию этого электрокинетического эффекта пока еще очень мало. Частицы твердого тела, несущие заряд на своей поверхности и осаждающиеся в жидкой среде, при своем движении оставляют за собой диффузную часть двойного слоя, которая, следовательно, смещается по отношению к движущейся частице с плотным, пристенным слоем. Если поместить два обратимых одинаковых электрода (например, Ад/АдС1) на различной высоте в сосуде с осаждающейся суспензией, то возникает между ними разность потенциалов сед, как это было впервые показано Дорном в 1878 г. [c.139]

    Следует указать на ряд интересных и важных теоретических исследований, проведенных недавно Б. В. Дерягиным и С. С. Ду-хиным по изучению электрофореза и потенциала седиментации . Эти авторы привлекают внимание к неравновесным электропо-верхностным силам, возникающим вследствие деформации двойного электрического слоя при движении взвешенных частиц. Деформированный двойной слой продуцирует электрическое поле, сфера действия которого часто на несколько порядков превышает сферу действия недеформированного двойного слоя в тех же условиях. С. С. Духин указывает на значение возникающих потоков диффузии, проводит их учет для явления седиментационного потенциала при движении твердых частиц и жидких капель в жидкой среде. Движение взвешенных частиц за счет электрического поля, образующегося при диффузии электролита, названо С. С. Духиным диффузиофорезом. Наличие этого процесса было демонстрировано им на примере осаждения глобул латекса. [c.143]

    Полученные результаты в исследовании Е. М. Лапинской привели И. И. Жукова к заключению, что сходные явления должны наблюдаться и в электродных процессах на металлических поверхностях. Такое исследование емкости двойного слоя на поверхности платины, меди и ртути было проведено в работе [c.164]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    А. Н. Фрумкин с сотрудниками предпринял серию исследований по выяснению влияния многовалентных катионов и анионов на емкость ртутного электрода в растворах электролитов.. Эти исследования также подтвердили недостаточность теории Штерна. Указанные недостатки побудили предпринять разработку более совершенной теории двойного слоя на границе металл— раствор. О. А. Есин рассматривает двойной слой, образующийся на поверхности металла вследствие адсорбции ионов какого-либо одного знака, например катионов (рис. 67). При этом ионы противаположного знака образуют вторую обкладку двойного слоя. В результате получается такая картина, как  [c.206]

    В дальнейшей разработке учения о двойном слое особенно важное значение имели работы Штерна, Мюллера и глубокие исследования по определению емкости потенциала нулевого заряда и по адсорбционным процессам, проведенные Фрумки-ным и его школой. Было установлено, что в общем случае для не сильно разбавленных растворов двойной слой состоит из двух частей внутренней — плотной и внешней — диффузной. На рис. 33 показано г — распределение зарядов, д — изменение потенциала, е — выравнивание эквивалентных концентраций катионов Ск и анионов Са с увеличением расстояния х от стенки. Внухренняя часть двойного слоя, по теорин Штерна состоит из двух рядов ионов, близко располТ55[<ен 1х друг от друга на некотором постоянном расстоянии бо порядка нескольких ангстрем. [c.83]

    Кроме полярографического метода, в современных исследованиях применяют хронопотенциометрнческий метод. В простейшем виде этот метод выражается в определении изменения потенциала обратимого электрода от равновесного при однократном пропускании постоянного тока в течение короткого промежутка времени. При достаточно большой концентрации раствора обеднение его не достигает значительного размера. Применение высоких плотностей тока при отсутствии концентрационной поляризации в растворе позволяет выяснить, сопровождается ли процесс замедленным разрядом или имеются другие возможные затруднения электродного акта. Через определенный промежуток времени направление тока меняют на обратное, и тогда можно проследить изменение потенциала при анодном процессе. Метод ступенчатого изменения потенциала используют для получения информации при быстрых электродных процессах, где фарадеевский ток затухает достаточно быстро, так что по окончании заряжания двойного слоя кривая зависимости тока от времени еще не стремится к выравниванию. На практике фарадеевский ток ограничен конечной величиной даже при почти идеальной ступеньке потенциала, что происходит по кинетическим причинам. [c.38]


Смотреть страницы где упоминается термин Двойной слой исследованиях: [c.176]    [c.392]    [c.151]    [c.392]    [c.230]    [c.190]    [c.233]    [c.392]   
Методы измерения в электрохимии Том1 (1977) -- [ c.491 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционный метод исследования двойного слоя

Алексеева, В. А. Кузнецов. Исследование емкости двойного электрического слоя на жидких сплавах галлий — сурьма

Методы исследования двойного электрического слоя

Переменнотоковая полярография как метод исследования строения двойного слоя

Петрий. Исследование структуры двойного электрического слоя на металлах группы платины

Плесков. Строение двойного слоя на полупроводниковых электродах. (Обзор исследований за 196—1971 гг

Экспериментальные методы исследования двойного электрического слоя

Эллипсометрические исследования двойного слоя



© 2025 chem21.info Реклама на сайте