Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость броуновской коагуляции

    Смолуховский при создании своей теории принимал, что скорость быстрой коагуляции, т. е. изменение численной концентрации частиц в единицу времени зависит от численной концентрации золя V, от интенсивности броуновского движения, характеризующейся коэффициентом броуновской диффузии частиц Ь, и от критического расстояния р, на которое должны приблизиться друг к другу центры двух частиц, чтобы произошло слипание частиц. Расстояние р может превышать диаметр коллоидных частиц (рис. IX, 1). Таким образом, если предста вить себе сферу радиу- са р, центр которой совпадает с центром одной из частиц, друга частица прилипнет к ней только тогда, когда центр второй частицы коснется поверхности этой сферы, называемой сферой поглощения. При расстояниях, больших р, действием молекулярных сил притяжения на броуновское движение частиц и на процесс их сближения Смолуховский полностью пренебрегал. [c.262]


    Скорость коагуляции является функцией счетной концентрации частиц V и интенсивности броуновского движения, характеризуемой коэффициентом диффузии О. Рассмотрение потока диффузии частиц в монодисперсной системе по направлению к одной частице с радиусом а (выбираемой в качестве центральной) на основе уравнения Фика (III. 10) приводит к выражению для скорости уменьшения числа частиц [c.238]

    Смолуховский при создании своей теории принимал, что скорость быстрой коагуляции, т.е. изменение численной концентрации частиц в единицу времени зависит от численной концентрации золя V, от интенсивности броуновского Рис. IX, 1. Схема, поясняю- Движения, характеризующейся коэффи-тая сферу действия частиц ЦИентом броуновсКОЙ ДИффузИИ частИЦ при быстрой коагуляции. D, и от критического расстояния р, на [c.262]

    Сравнение уравнения (У.12) с выражением (У.5) для константы скорости броуновской коагуляции показывает, что соотношение числа актов коагуляции в ламинарном потоке и в неподвижной среде [c.134]

    Показано, что при обдувке аэрозольного облака с помощью вентилятора потери скорости обусловлены комбинированным эффектом броуновской коагуляции и потерями на лопастях и на кожухе вентилятора [298] [c.519]

    Скорость процесса коагуляции определяется двумя факто- рами 1) вероятностью достаточного сближения частиц под "влиянием броуновского движения, 2) вероятностью того, что при таком сближении эти частицы действительно образуют агрегат. Поэтому рассматривая процесс коагуляции при добавлении электролита, различают медленную коагуляцию, отвечающую слипанию наиболее быстро движущихся частиц при уменьшении сил отталкивания, и быструю коагуляцию, когда каждое столкновение частиц приводит к их слипанию. [c.235]

    На скорость быстрой коагуляции в условиях монодисперсности коллоидной системы влияют три основных фактора интенсивность броуновского движения (его мерой является коэффициент диффузии О), радиус р сферы притяжения частиц (то расстояние, на которое должны приблизиться центры двух частиц, чтобы произошло их слияние) и, наконец, начальная концентрация По частиц в системе. Чем больше о. тем больше ве-роятность ш эффективных столкновений частиц. При быстрой коагуляции ш=1, при медленной и)<1. Если коагуляции нет, г1У = 0. [c.124]

    Коэффициент броуновской коагуляции К , вообще говоря, довольно малая величина. Для частиц плотностью 1000 кг/м в воздухе при 23 °С и атмосферном давлении этот коэффициент имеет значения, представленные в табл. 6.1. Совершенно очевидно, что значительные скорости процесса коагуляции обусловлены не столько величиной К , сколько значением численной концентрации частиц. [c.123]


    Броуновское движение играет основную роль в коагуляции и флокуляции высокодисперсных частиц. Скорость броуновской флокуляции выражается уравнением [c.78]

    Процесс коагуляции протекает с некоторой вполне определенной скоростью. Различают быструю и медленную коагуляцию. В первом случае все столкновения частиц в броуновском движении приводят к их слипанию, во втором только часть столкновений эффективна. Очевидно, что скорость медленной коагуляции и переход ее в быструю коагуляцию зависят от степени потери устойчивости и, соответственно, от концентрации электролита-коагулятора. [c.186]

    Скорость броуновского движения, определяющая число встреч частиц в единицу времени эта скорость определяется коэффициентом диффузии. Отсюда же вытекает и ускоряющее действие повышения температуры на коагуляцию. [c.347]

    Поскольку достаточно большая величина, то, несмотря на малость К , начальная скорость коагуляции весьма существенна. Это приводит к тому, что в начальный момент образования высокодисперсного аэрозоля практически мгновенно происходит укрупнение частиц. Именно благодаря броуновской коагуляции дисперсный состав пыли в технологических газах, поступающих на газоочистку, обычно характеризуется большей крупностью частиц, чем в момент их образования в источнике аэрозоля (в печи). [c.123]

    Однако экспериментально не удалось показать, что обычно достижимая электризация дымов влияет на скорость коагуляции. В грубых опытах не было обнаружено явного различия в коагуляции заряженных и незаряженных дымов оксида цинка и оксидов других цветных металлов. Все это вместе взятое говорит о том, что тепловая (броуновская) коагуляция заряженных частиц не имеет существенного значения для промышленного использования и нужны специальные меры и устройства для улавливания частиц, несущих электрический заряд. [c.157]

    Коллоидные системы довольно стабильны, в них действуют силы, препятствующие укрупнению мицелл. Однако золь может перейти в гель, т. е. такое состояние, в котором из коллоидного раствора выпадает коллоидно-растворенное вещество. Переход золя в гель называется коагуляцией. Коагуляция (осаждение) — процесс укрупнения мицелл, происходящий под действием броуновского движения она может быть вызвана повышением температуры или концентрации, разного рода механическими воздействиями, введением в данный золь других золей. Время (скорость) коагуляции может быть различным — от долей секунды, когда образование геля проходит практически моментально, до многих дней и недель. Скорость коагуляции определяет строения геля. [c.34]

    Лучшие свойства обеспечиваются при получении частичек менее 1 мкм, что соответствует истинно коллоидному раствору. Последний отличается от суспензии сравнительно меньшей скоростью седиментации, что связано с броуновским движением, присущим частичкам в коллоидных растворах. Не являясь истинными растворами, частички малых размеров при определенных концентрациях по закону энтропии стремятся к равномерному распределению в объеме. Этому препятствует коагуляция. Согласно теоретическим и экспериментальным данным устойчивость коллоидных растворов повышается с уменьшением размеров частичек. Это связано, в частности, с тем, что чем крупнее частичка, тем выше вероятность ее превращения в центр коагуляции. [c.364]

    Поскольку вначале мы приняли, что коагуляция является быстрой, скорость ее определяется только частотой соударений между частицами, которая в свою очередь зависит от концентрации частиц и интенсивности броуновского движения. Последняя, как известно, характеризуется коэффициентом диффузии. Принимая это во внимание, вычислим константу Т , предположив, что сближение частиц обусловлено диффузией и что они имеют сферическую форму. Прежде всего решим эту задачу для одной неподвижной частицы. Любая другая частица, которая приблизилась бы к ней настолько, что расстояние между их центрами стало бы равным их удвоенному радиусу, слипнется с нею. Условие слипания двух частиц, радиус каждой из которых равен г, не может измениться, если неподвижную частицу заменить другой частицей с радиусом 2г, а подвижную рассматривать как точку. Тогда вопрос сведется к диффузии точечных масс к сфере радиусом Я = 2г. [c.199]

    На рис. IX, 6 изображена потенциальная кривая для частиц, находящихся в вакууме, газе или жидкости, не содержащей стабилизующих ионов и не образующей сольватного слоя. Левая часть кривой показывает, что при малых значениях Н энергия молекулярного взаимодействия изменяется обратно пропорционально второй степени расстояния. В правой части кривой при сравнительно больших значениях Н энергия молекулярного притяжения из-за электромагнитного запаздывания изменяется обратно пропорционально третьей степени расстояния. Расположение всей кривой ниже оси абсцисс свидетельствует о том, что при отсутствии стабилизующего фактора сблизившиеся частицы неизбежно должны слипнуться. В реальных условиях это отвечает двум частицам аэрозоля или двум полностью стабилизованным частицам лиозоля. Скорость коагуляции таких систем определяется только временем, необходимым для сближения частиц друг с другом в результате броуновского движения,  [c.278]


    На скорость образования и свойства полученного геля весьма сильно влияет температура. Время образования геля по тем же причинам, что и время коагуляции, при повышении температуры уменьшается. Однако с повышением температуры в результате увеличения интенсивности броуновского движения лиофобные гели могут переходить в структурированную жидкость, а затем, при еще [c.316]

    Коагуляция аэрозолей и осаждение аэрозольных частиц. Аэрозоли — неустойчивые дисперсные системы, в которых интенсивное броуновское движение вызывает уменьшение концентрации частиц. Они не имеют факторов стабилизации, характерных для лиозолей. Однако во многих случаях скорость их естественной коагуляции недостаточна, а распределение частиц в пространстве нежелательно. Это в первую очередь относится к отходящим газам промышленного производства. Для очистки газов увеличивают число соударений частиц, применяя звуковые колебания частотой 1—10 кГц. Иногда скорость коагуляции повышают, вводя в систему с газовой дисперсной фазой другой аэрозоль с более крупными частицами. Крупные частицы служат ядрами конденсации, на которых скапливаются мелкие частицы коагулируемого аэрозоля. [c.190]

    Константа скорости коагуляции выражает вероятность столкновений, приводящих к образованию двойных частичек она зависит от интенсивности броуновского движения, т. е. от константы диффузии [c.93]

    Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензий не участвуют в броуновском движении, они не способны к диффузии и как следствие в отличие от лиозолей суспензии седиментационио неустойчивы и в них практически отсутствует осмотическое давление. Молекулярно-кинетическое движение частиц лиозолей обусловливает энтропийное отталкивание частиц, обеспечивает равномерное их распределение по объему дисперсионной среды. Энтропийный фактор агрегативной устойчивости у суспензий отсутствует, скорость их коагуляции не зависит от броуновского движения (и не может следовать закономерностям теории кинетики коагуляции Смолуховского), а связана в основном со свойствами прослоек дисперсионной среды. Действия других факторов агрегативной устойчивости в суспензиях и лиозолях имеют много общего. [c.343]

    Константа К скорости коагуляции выражает вероятность столкновений, приводящих к образованию двойных частиц она зависит от интенсивности броуновского движения, т. е. от константы диффузии О и от расстояния б, на котором действуют силы притяжения, [c.125]

    Явление тиксотропии объясняется разрывом контактов, образующих структуру геля, с последующим обратимым их восстановлением в процессе броуновского движения частиц. Поэтому физический смысл 0 близок к периоду медленной коагуляции и определяется скоростью диффузии, а также высотой энергетического барьера. Величины 0 для реальных систем могут составлять доли секунды и десятки часов. Строгой количественной теории [c.281]

    Явление тиксотропии объясняется разрывом контактов, образующих структуру геля, с последующим обратимым их восстановлением в процессе броуновского движения частиц. Поэтому физический смысл 0 близок к периоду медленной коагуляции и определяется скоростью диффузии, а также высотой энергетического барьера. Значения 0 для реальных систем могут составлять ка доли секунды, так и десятки часов. Строгой количественной теории тиксотропии до настоящего времени не существует, несмотря па огромное практическое значение этого явления. [c.275]

    Частицы А. размером менее 1 мкм всегда прилипают к твердым пов-стям при столкновении с ними. Столкновение частиц друг с другом при броуновском движении приводит к коагуляции А. Для монодисперсных А. со сферич. частицами скорость коагуляции и/Л= — где и-число частиц в единице объема, К-т. наз. коэф. броуновской коагуляции. В континуальном режиме К рассчитывают по ф-ле Смолуховского = 4яйрОр, в свободномолекуляр-ном-по ф-ле К = л1/2- рИрр, где Кр-средняя скорость теплового движения аэрозольных частиц, р-коэф., учитывающий влияние межмол. сил и для разл. в-в имеющий значение от 1,5 до 4. Для переходного режима точных ф-л для вычисления К не существует. Помимо броуновского движения коагуляция А. может иметь и др. причины. Т. наз. градиентная коагуляция обусловлена разностью скоростей частиц в сдвиговом потоке кинематическая-разл. скоростью движения частиц относительно среды (напр., в поле гравитации) турбулентная и акустическая-тем, что частицы разного размера сближаются и сталкиваются, будучи в разной степени увлечены пульсациями или звуковыми колебаниями среды (последние две причины существенны для инерц. частиц размером не менее 10 м). На скорость коагуляции влияет наличие электрич. заряда на частицах и внеш электрич. поля. [c.236]

    Пришли к заключению, что специфические химические силы взаимодействия должны иметь возможность преодолевать электростатические силы отталкивания. Адсорбция таких разновидностей железа на кремнеземе при одинаковом по знаку заряде должна включать образование связей Si—О—Fe. Такое положение согласуется с идеей о том, что образование химических связей между частицами кремнезема посредством включения в связь промежуточного мостикового атома или же промежуточной частицы фактически может представлять собой силы притяжения вместо предполагаемых вандерваальсовых сил , по крайней мере для случая кремнезема. Согласно некоторым авторам [220, 258], положительно заряженные коллоидные частицы — поликатионы действуют подобно мостикам между отрицательно заряженными частицами кремнезема, формируя таким образом трехмерную сетку. В таком случае коагулянт представляет собой часть осадка. Хан и Стамм [259, 260] выявили стадию, определяющую скорость процесса коагуляции частиц кремнезема при использовании гидролизованных ионов алюминия. Они постулируют три различающиеся стадии а) образование коагулянта в виде поликатионной разновидности посредством гидролиза и полимеризации алюминия (III) б) дестабилизацию дисперсии в результате специфической адсорбции изополикатионов, которая понижает потенциал поверхности коллоидных частиц кремнезема эта стадия обозначается как адсорбционная коагуляция в) перенос коллоидных частиц за счет броуновского движения или же существования градиента скоростей. Стадии а) и б) протекают быстро, тогда как стадия в) оказывается медленной, т. е. этапом, определяющим скорость всего процесса. Скорость коагуляции была получена как произведение значения частоты столкновений частиц на фактор эффективности таких столкновений. Авторы провели различие между адсорбционной коагуляцией в том случае, когда имеется скопление коллоидных частиц с гидролизованными ионами металла, способными сильно адсорбироваться на поверхности коллоидного кремнезема, и дестабилизацией в случае существования негидролизованных ионов металла, когда адсорбция указанных ионов оказывается значительной относительно общего количества ионов, присутствующих в растворе. [c.518]

    Имеется несколько механизмов, приводящих к сближению частиц. Первым механизмом является броуновское движение. Коагуляция в этом случае называется также перикинетической. Механизм броуновской коагуляции лежит в основе коагуляции частиц, размер которых меньше одного микрона. В основе второго механизма лежит относительное движение частиц в поле градиента скорости несущей жидкости. Эта коагуляция называется градиентной, сдвиговой, а также ортокинетической. Она характерна для частиц, размер которых превосходит один микрон. Возможна также коагуляция частиц за счет разной скорости их движения в покоящейся жидкости под действием силы тяжести (при седиментации). Такая коагуляция называется гравитационной. [c.214]

    Согласно теории Смолуховского, скорость быстрой коагуляции золя зависит от начальной концентрации частиц Па, интенсивности их броуновского движения и радиуса действия сил притяжения. Для скорости увеличения числа агрегатов частиц Смо-луховский получил следующее выражение, соответствующее реакции второго порядка  [c.128]

    При молекулярно-кинетической коагуляции не получаются достаточно крупные хлопья, и этот процесс быстро прекращается вследствие сокращения числа частиц, на которые оказывает влияние броуновское движение, поскольку интенсивность последнего также снижается. Для завершения коагулирования и получения более крупных хлопьев используют градиентную коагуляцию (перемешивание), при которой в объеме воды образуются турбулентные потоки, микровихри, способствующие столкновению и слипанию частиц. Прочность образующихся хлопьев зависит от количества связей между макромолекулой флокулянта и твердой поверхностью частицы. Потоки, движущиеся с различными скоростями, создают неравномерные напряжения на отдельных участках структуры хлопьев, поэтому образовавшиеся хлопья могут разрушаться. С увеличением интенсивности перемешивания разрушение хлопьев усиливается. Конечный размер хлопьев зависит от соотношения скоростей их образования и разрушения [46]. Скорость градиентной коагуляции описывается уравнением [c.93]

    Скорость быстрой коагуляции для неиодвижной среды при броуновском движении частиц, по теории Смолуховского [2], равна [c.81]

    Если константа скорости пептизации значительно больше константы скорости коагуляции (энергия активации пептизации значительно меньше, чем при коагуляции), то в системе будут преобладать мелкие первичные частицы. С увеличением константы скорости коагуляции (уменьшением ее потенциального барьера) число двойных, тройных и т. д. частиц в равновесной системе возрастает. Если коагуляция вызвана взаимодействием между частицами через прослойки среды, то энергия притяжения незначительна, и минимум энергии состемы характеризуется малым отрицательным значением. Поэтому небольшие изменения в системе (колебания pH, ко1щентрацпи электролита), вызывающие увеличение силы отталкивания частиц (уменьшение силы нх притяжения), приводят к пептизации системы иод действием броуновского движения. К системам, способным к подобным превращениям, относится большинство лиозолей (гидрозолей), стабилизированных различными способами, в том числе с помощью электролитов, ПАВ и ВМС. В этом отношении интересны гидрозоли оксида кремния, которые [c.287]

    Другая трудность в применении теории Смолуховского к обычным эмульсиям — влияние ортокинетической коагуляции. Она проявляется в том, что в высокополидисперсных системах, подвергающихся коагуляции, мелкие частицы исчезают значительно быстрее, чем крупные — эффект Вернера (1932). Ортокинетическая коагуляция заключается в увеличении скорости столкновения частиц сверх скоростей, обусловленных броуновским движением, возникающим из-за различных скоростей движения больших и малых частиц в гравитационном поле или при конвекции. Этот эффект ясно демонстрируется, например, в дисперсиях угольной сажи, к которым добавляют определенное количество соли, чтобы вызвать медленную коагуляцию. В некоторых случаях золи, медленно коагулирующие при стоянии, мгновенно коагулируют при интенсивном встряхивании. Такой эффект является авто каталитическим, так как при росте агрегатов неравенство скоростей увеличивается. В типичных эмульсиях с размером капель 0,1 —10 мкм и более ортокинетическая коагуляция может быть более важной, чем обычная коагуляция. Поэтому ни теория Смолуховского, ни любое ее усовершенствование не применимы к процессам быстрой и медленной коагуляции. [c.107]

    Функции распределения являются самосохраняющимися , так как при графическом выражении в безразмерном виде они стремятся сохранить свою форму. Для проверки нескольких функций использованы эмульсии М/В без эмульгатора кривые оказались примерно самосохраняющимися. Эта работа продолжена Гиди (1965) и Гиди и Лилли (1965). Предложенные ими уравнения предсказывают, что скорость коагуляции для гетерогенных золей больше, чем для первоначально гомогенных. Кроме того, они считают, что уравнение Смолуховского для броуновского движения согласуется с подобными уравнениями для гетерогенных золей, когда отношение среднего [c.107]

    Представления Смолуховского объясняют коагуляцию монодисперсных золей. Мюллер разработал подобную же теорию дл объяснения коагуляции полидисперсных систем. Он показал, что-частицы различных раам в агрегируются всегда скорее, чем оди наковые частицы. Приэтой больш ие частицы играют роль как бы зародышей коагуляции такую же роль могут играть и агрегаты,"о р уюшиеся в начальной стадии коагуляций приблизительно монодисперсного золя золота, как об этом свидетельствуют наблюдения Б. В. Дерягина и Н. М. Кудрявцевой. Впрочем, положения Мюллера полностью верны лишь тогда, когда в золе имеются частицы,/существенно превосходящие по размеру малые частицы Теория Мюллера объясняет автокаталитический характер коагуляции, скорость которой может постепенно возрастать со временем. Мюллер также показал, что коагуляция ускоряется, если частицы нмрют форму, так как на поступательное броуновское [c.266]

    Таким образом, аэрозоли, обладая при высокой дисперсности достаточнЬй седиментационной устойчивостью, обычно являются весьма агрегативно. неустойчивыми системами и в них всегда идет процесс коагуляции. Этим объясняется сравнительно небольшой срок жизни любого аэрозоля. Существенно, что максимальную неустойчивость проявляют аэрозоли с наиболее крупными и наиболее мелкими частицами. Первые системы неустойчивы из-за большой скорости оседания их частиц, вторые не могут долго существовать вследствие интенсивного броуновского движения, приводящего к столкновению частиц и образованию агрегатов. [c.348]

    Коагуляция аэрозолей, являющаяся, как правило, процессом быстрой коагуляции, обычно протекает значительно быстрее, чем коагуляция лиозолей, из-за более интенсивного броуновского движения в системах с газовой дисперсионной средой. Расчеты показывают, что скорость коагуляции чрезвычайно сильно возрастает с увеличением численной концентрации аэрозоля. Ниже приведены данные, характеризующие скорость коагуляции аэрозолей в зависимости от концентрации  [c.348]

    Г. Мюллер распространил теорию на случаи коагуляции полидисперсных систем и систем с палочкообразными и пластинчатыми частицами. В соответствии с теорией Мюллера в полидисперсных системах коагуляция протекает быстрее, чем предсказывает теория Смолуховского. Отклонение форм частиц от сферической также способствует повышению скорости коагуляции, так как, кроме поступательного броуновского движения, к столкновениям приводит вращательное броуновское движение. Теоретические предположения Мюллера экспериментально подтверждаются работами Вигнера, Туорила, Маршала. [c.109]

    Коагуляция в аэрозольных системах происходит значительно энергичнее по сравнению с лиозольными благодаря интенсивному броуновскому движению. Процесс интенсифицируется с ростом частичной концентрации (число частиц в 1 см ). Так, если при частичной концентрации от 10 ° до 10 коагуляция происходит в доли секунды, то при 10 -4-10 о<на идет примерно в течение получаса и, наконец, при 10 -4-10 затягивается до нескольких суток. Практически аэрозольные системы являются системами примерно в 10 10 раз более разбавленными, чем лиозольные (например, обычный лио-золь золота содержит 10 частиц в 1 см ). Однако положения, относящиеся к устойчивости золей, могут быть отнесены и к аэрозолям. Естественно, что на скорость коагуляции аэрозолей влияют и конвекционные воздействия, механическое перемещивание, ультразвуковые колебания и другие факторы, способствующие столкновению частиц. [c.248]


Смотреть страницы где упоминается термин Скорость броуновской коагуляции: [c.263]    [c.142]    [c.263]    [c.273]    [c.353]    [c.207]    [c.447]    [c.303]   
Подготовка промышленных газов к очистке (1975) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Коагуляция броуновская

Коагуляция скорость



© 2025 chem21.info Реклама на сайте