Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация диффузии

    Коэффициент диффузии в газовой фазе Изменяется обратно пропорционально давлению Р и молекулярной массе М, а коэффициент диффузии в жидкой фазе не зависит от давления, но сильно зависит от степени сольватации или гидратации поглощенного из газа компонента. [c.10]

    В кинетической области протекают главным образом процессы на малоактивных катализаторах мелкого зернения с крупными порами при турбулентном течении потока реагентов, а также при низких температурах, близких к температуре зажигания катализатора. Однако для реакций в жидкостях переход в кинетическую область сопровождается понижением вязкости, а известно, что вязкость уменьшается с ростом температуры. С повышением температуры уменьшается также степень ассоциации, сольватации, гидратации молекул реагентов в растворах, что приводит к росту коэффициентов диффузии и соответственно к переходу из диффузионной области в кинетическую. Для реакций, общий порядок которых выше единицы, характерен переход из диффузионной области в кинетическую при значительном понижении концентрации исходных реагентов. [c.30]


    Константа В, а следовательно, и коэффициент диффузии О зависят, кроме того, от геометрических характеристик частиц — их формы и размеров. При этом следует учитывать сольватацию частиц в растворе. Сильная сольватация малых частиц может существенно изменить их геометрию. Поэтому измеренные значения О могут оказаться меньше теоретических, рассчитанных на основе данных о форме и размерах несольватированных частиц. [c.49]

    Перрен и Герцог на основании определения коэффициента диффузии в водных растворах вычисли.ли молекулярные веса некоторых углеводов, допустив, что молекулы их имеют сферическую форму и они настолько малы, что воду можно рассматривать как непрерывную среду и что увеличения радиуса молекул, а следовательно, и коэффициента В вследствие сольватации растворенного вещества не происходит. Полученные ими результаты приведены в табл. III, 1. [c.62]

    На первой стадии набухания происходит сольватация макромолекул в результате диффузии растворителя в высокомолекулярное вещество. Эта стадия характеризуется выделением тепла и упорядочением расположения молекул растворителя около макромолекул, в результате чего энтропия системы в первой стадии растворения обычно даже понижается. Основное значение этой стадии при растворении сводится к разрушению связей между отдельными макромолекулами, вследствие чего цепи становятся свободными и способны совершать тепловое движение в целом. [c.444]

    Изучение свойств растворов высокомолекулярных соединений сыграло огромную роль в развитии коллоидной химии. Первые исследования диффузии, осмоса, оптических свойств коллоидов были проведены с растворами желатины, агара, целлюлозы, т. е. с растворами ВМС. При этом выяснилось, что растворы ВМС более устойчивы по сравнению с золями. В течение длительного времени это объяснялось высоким сродством растворенных веществ к растворителю (дисперсионной среде) и связанной с этим высокой сольватацией. Это нашло отражение в исторически сложившемся названии таких растворов — лиофильные золи или обратимые коллоиды в отличие от лиофобных золей — обычных (необратимых) коллоидных систем. Позднее была найдена истинная причина термодинамической устойчивости лиофильных золей — отсутствие поверхности раздела фаз и поверхностной энергии — их гомогенность. Было показано также, что, хотя свойства растворов высокомолекулярных соединений в значительной степени определяются их сродством к растворителю, доля растворителя, вошедшего в сольватные оболочки, не очень велика. Поэтому правильным следует считать термин растворы ВМС или молекулярные коллоиды , а не лиофильные золи . [c.435]


    Исходя ИЗ коэффициента диффузии, определяют радиус г и объем сольва-тированного иона v. Вычитая из полученного объема v собственный объем иона, находят объем сольватной оболочки и определяют числа сольватации. [c.141]

    В изложенном виде теория бимолекулярных реакций, известная как теория соударений, достаточно строго применима для реакций в газовой фазе. В растворе движение частиц между соударениями нельзя рассматривать как свободное, так как они окружены сольватной оболочкой из молекул растворителя. Правильнее рассматривать их перемещение как последовательные переходы из одного состояния сольватации в другое, а встречу двух частиц А и А2, способных реагировать друг с другом как попадание этих частиц в единую сольватную оболочку, или, как часто говорят, в клетку из молекул растворителя. Такое перемещение можно описывать как диффузию одних частиц по направлению к другим. В течение некоторого времени молекулы А] и Аг находятся в одной клетке и могут прореагировать. Если вероятность реакции в течение времени пребывания их в клетке достаточно близка к единице, то бимолекулярная реакция проходит с той скоростью, с какой частицы А) и А2 успевают диффундировать друг к другу. Теория, изложение которой выходит за рамки данного курса, дает выражение для константы скорости реакции частиц А1 и Аг в случае, если эта скорость определяется (лимитируется) диффузией, в виде [c.359]

    По уравнению (7.6.4) можно рассчитать молекулярный вес вещества, сравнивая скорости диализа данного вещества и вещества с известным молекулярным весом. В этом методе в отличие от методов криоскопии или методов, связанных с использованием осмоса, определяют истинный вес частицы растворенного вещества, а не число частиц вещества, на которых приходится определенный вес. Применяя метод диализа, можно контролировать процессы комплексообразования, сольватации и—в определенные промежутки времени — процессы сольволиза и явления старения, что находит отражение в изменении веса частиц. При этом можно сравнивать лишь вещества с частицами одинаковой формы. Уравнение (7.6.4) строго выполнимо только для сферически симметричных частиц (например, ионов). Процесс диффузии линейных или плоских молекул органических соединений затруднен, вследствие чего, а также вследствие ситового эффекта мембраны значения констант диализа для этих соединений отличаются от рассчитанных по уравнению (7.6.4). [c.386]

    Если тепловые эффекты растворения обозначить через (Эр, разрушения кристаллической решетки через — Q , сольватации через и диффузии через —( д, то в общем виде  [c.145]

    Для многих систем набухание включает не только диффузию жидкости в полимер, но и сольватацию макромолекул. Обычно при взаимодействии высокомолекулярного вещества с растворителем сольвати-руется не вся макромолекула, а отдельные ее группы. [c.249]

    Изменение скорости хим. процессов м. б. обусловлено также влиянием Д. на физ. св-ва среды. Так, вследствие возрастания вязкости с повышением Д. р-ции могут перейти из кинетич. области протекания в диффузионную, когда скорость р-ции контролируется диффузией реагирующих частиц (см Макрокинетика). Изменяя е среды, Д. влияет на скорость ионных р-ций. При этом объемные эффекты, вызванные сольватацией ионов или заряженных групп молекул, учитываются с помощью ур-ния Друде-Нернста-Борна  [c.621]

    При атмосферном давлении в 1 см газа содержится приблизительно 10 , а в таком же объеме жидкости — примерно 10 молекул. Концентрация молекул в жидкости такая, как в газе под давлением 10 МПа. Поэтому проведение реакций в жидкой фазе с точки зрения соотношения скоростей моно- и бимолекулярных реакций равносильно проведению их в газовой фазе под высоким давлением. В результате при равных температурах жидкофазные термические реакции углеводородов и нефтепродуктов приводят к значительно большему выходу продуктов конденсации и меньшему выходу продуктов распада. На суммарный результат превращения углеводородов в жидкой фазе определенное влияние оказывают клеточный эффект и сольватация. При распаде молекулы углеводорода на радикалы в газовой фазе последние немедленно разлетаются. В жидкой фазе радикалы окружены клеткой из соседних молекул. Для удаления радикалов на расстояние, при котором они становятся кинетически независимыми частицами, необходимо преодолеть дополнительный активационный барьер, равный энергии активации диффузии радикала из клетки. С другой стороны, и для рекомбинации радикалы должны преодолеть клеточный эффект. В результате суммарная концентрация радикалов в жидкости останется такой же, как и в газовой фазе. Однако, если радикалы существенно различаются по массе и активности, то клеточный эффект может изменить стационарную концентрацию радикалов, что приведет к изменению энергии активации жидкофазной реакции относительно газофазной. [c.319]


    Если реакции проводить вначале в растворителе 1, а затем в растворителе 2 или 3, то в большинстве случаев можно отметить разницу в скорости реакции, причем подчас различие скоростей может быть очень существенным. Исключив реакции, контролируемые диффузией, такое влияние растворителей иа к элементарных реакций объясняют с помощью теории активированного комплекса. В данном случае решающее влияние имеют свободные энтальпии сольватации не реагентов и продуктов реакции, а реагентов и активированного комплекса [c.145]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    При обосновании механизма поверхностной диффузии, согласно Дж, Бокрису, рассматривают различие в степени сольватации адионов на поверхности грани и в месте роста, обусловленное стерическими условиями. При адсорбции на поверхности грани десольватация иона оказывается наименьшей, тогда как адсорбция в месте к (см. рис. 169) требует значительной десольватации иона и потому может оказаться энергетически невыгодной. В результате разряд будет происходить преимущественно на поверхности грани. В ходе последующей диффузии к месту роста наблюдается постепенная десольватация адиона. [c.322]

    Абсолютная скорость передвижения иона уменьшается с увеличением сольватации. По абсолютной скорости ионов вычисляют коэффициент диффузии D электролита при бесконечном разведе- чии. Для бинарного равнозарядного электролита (п+ = п-=п)  [c.88]

    Сильные и слабые электролиты. При растворении вещество подвергается ряду физико-химических процессов диффузии, сольватации, диссоциации, ассоциации, сольволизу, комплексообразова-нию и др. В зависимости от степени диссоциации различают сильные и слабые электролиты. Степень электролитической диссоциации а определяется как а=Сдисс/Собщ, где Собщ — общая концентрация электролит1а, Сдисс — концентрация электролита, распавшегося на ионы. [c.31]

    Скорость реакции в этом случае зависит как от скорости диффузии через поверхность раздела фаз, так и от скорости гомогенной реакции в органической фазе. Важными факторами являются энергия разрушения водной оболочки аниона и энергия пересольватации органическим растворителем. Следует отметить, что при переходе аниона нз водной в органическую фазу наблюдается кардинальное изменение сольватации оние-вых ионов. Анион перешедшей в органическую фазу ионной пары 0+ V крайне мало сольватирован, что даже дало повод называть реакции таких ионных пар реакциями голых анионов (см. обзор [2]). Очевидно, что для таких реакций выгоднее всего использовать возможно более липофильные катионы и малополярные растворители. Классическим примером переноса анионов из водной фазы в органическую является окрашивание бензольного слоя в малиновый цвет в системе водный раствор КМЛО4 — бензол при добавлении метилтриок-тиламмонийхлорида [3]. В настояш,ее время такой малиновый бензол используют для окисления многих органических соединений. [c.13]

    Растворение.ч, как мы уже сказали, называют само(ЕроизволЬ ный процесс образования термодинамически устойчивой гомогенной (однофазной) системы. Прн самопроизвольном растворе-иин полимеров происходят следующие процессы диффузия молекул растпорителя в матрицу полимера, сольватация молекул растворителя на активных центрах макромолеку.ч распад надмолекулярных образований вследствие сольватации н ослабления межмолекулярного взаимодействия отделение предельно [c.400]

    В газе. Поэтому интересно сравнить медленные реакции, которые в жидкости не лимитируются диффузией, с константами скорости к < 10 л/(моль с) в газовой фазе. В жидкости на химическую реакцию, как мы увндим, сильно влияют сольва-тационные эффекты и образование молекулярных комплексов. Поскольку в газовой фазе сольватации нет, то для корректного сравнения следует взять реакции, в которых по крайней мере один из реагентов - неполярная частица, например углеводород. Наиболее подходящими для такого сравнения являются реакции радикалов с неполярными С-Н-связями. В табл. 8.1 представлены данные о таких реакци51Х, для которых измерены константы скорости в газовой и жидкой фазах. Видно, что во всех случаях в жидкой фазе константы скорости бимолекулярных реакций радикального отрыва выще, чем в газе. [c.212]

    В общем случае спектроскопия ЯМР является эффективным методом изучения сольватных оболочек и процессов сольватации, поскольку химические сдвиги молекул растворителя, непосредственно связанных с ионом, отличаются от химических сдвигов свободных молекул [106—111]. Однако если скорость обмена слишком высока, то сигналы ЯМР сливаются в один усредненный по времени резонансный сигнал. Обычно принимается, что молекулы растворителя, находящиеся в окружении иона, но не входящие в первую координационную сферу, обмениваются со скоростью, контролируемой диффузией, и поэтому их усредненные резонансные сигналы не отличаются от сигналов свободных молекул растворителя. Для изучения сольватных оболочек предлагалось использовать спектроскопию ЯМР Н, 13С, по и 31р g качестве примера укажем, что в спектре ЯМР Н 2,1 М водного раствора А1(МОз)з при —40 °С имеются два резонансных сигнала [112]. Смещенный в слабое поле сигнал отвечает координационно-связанному растворителю, а смещенный в сильное поле — свободным молекулам растворителя. В спектре ЯМР С раствора AI I3 в водном диметилсуль-фоксиде при 30°С также наблюдаются два сигнала, один из которых отвечает свободному, а другой (смещенный в сильное поле на 1,94 млн )—связанному растворителю [113]. [c.62]

    Возникающий процесс диффузии проявителя, т. е. его движения по капиллярам листа бумаги, приводит к сольватации молекул анализируемого вещества проявителем и движенодо этих молекул перпендикулярно стартовой линии по плоскости листа бумаги. Различные молекулы органических соединений в зависимости от природы проявителя движутся от стартовой линии с различной скоростью. Через несколько часов (или суток) проявитель дЪходит до верха листа, а анализируемые вещества остаются на бумаге в виде пятен, прошедших определенное расстояние. Если анализируемые вещества бесцветны, то можно сделать их видимьши, проведя цветную аналитическую реакцию. [c.97]

    Все сказанное, естественно, в полной мере касается водных растворов, на которых мы далее сосредоточим внимание. В этом случае для сольватации используется специальный термин - гид ротация. Современные структурно-чув-ствительные физико-химические методы - рассеяние рентгеновских лучей и нейтронов, а также ядерный магнитный резонанс - подтверждают описанную картину состояния ионов в растворах и уточняют ее. Для большинства исследованных катионов характерно образование внутренней координационной сферы из шести молекул воды, т. е. катионы в растворе можно рассматривать как частицы [М(Н20)б] В то же время акс-лериментальные определения скорости диффузии и подвижности ионов под действием тока показывают, что в растворах с каждым ионом связано гораздо большее число молекул воды. Эти числа, называемые числами гидратации ионов, составляют, например, для в среднем больше 100, а для Сз - 5-10, так что и средний радиус гидратированного иона лития (приблизительно 0,340 нм) больше, чем у цезия (0,228 нм), хотя, конечно, радиус иона лития в кристаллах (0,060 нм) гораздо меньше, чем цезия (0,169 нм). [c.184]

    В значительном числе работ [766, 765, 1153, 1022, 963, 1052, 904, 891, 906, 743, 780, 1233, 1197, 1134, 739, 1226, 885, 1000, 984, 1190, 1128, 1189, 1082, 342, 67, 504, 987] уделено внимание электровосстановлению таллия из органических сред. По полярографическим данным процесс обратим, на ртутном электроде одноэлектронное восстановление заканчивается образованием амальгамы. Некоторая необратимость наблюдается лишь в отдельных растворителях [1197]. Волны на поляризационных кривых имеют диффузионный характер, в нескольких растворителях определены коэффициенты диффузии ионов таллия. Прослеживается четкая зависимость Eiix от природы и концентрации фонового электролита [1128], а также корреляция с донорным числом растворителя [891]. Ион таллия, характеризующийся малым эффективным зарядом, а следовательно, небольшой склонностью к сольватации, как правило, показывает малое изменение в потенциалах восстановления при переходе от одного растворителя к другому. Благодаря этому редокс-систему Т1(1)/Т1(0) можно использовать для некоторых растворителей в качестве электрода сравнения [765, 766]. Электродный процесс при восстановлении комплексов таллия с органическими лигандами осложнен адсорбцией [1082, 67, 69]. [c.89]


Смотреть страницы где упоминается термин Сольватация диффузии: [c.394]    [c.121]    [c.130]    [c.234]    [c.64]    [c.71]    [c.467]    [c.361]    [c.237]    [c.372]    [c.498]    [c.216]    [c.666]    [c.697]    [c.395]    [c.397]    [c.84]    [c.160]    [c.489]    [c.18]   
Физическая химия неводных растворов (1973) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте