Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидродинамика, понятие

    Просматривая снова гл. IV и V, мы начинаем понимать, какое большое значение имеет для гидродинамики понятие группы. [c.195]

    Таким образом, определение понятия величины а до сих пор нуждается в уточнении, так как поверхность раздела, эффективная для массопереноса при химической абсорбции, зависит не только от гидродинамики жидкой фазы, но и от времени реакции. Проблема очень сложна и по этому вопросу в литературе имеется очень мало сообщений. [c.91]


    Это позволяет в качестве исходного допущения теории фильтрации, так же как и в гидродинамике принять, что пористая среда и насыщающие ее флюиды образуют сплошную среду, т.е. заполняют любой выделенный элементарный объем непрерывно. Это накладывает определенные ограничения на понятие элементарного объема порового пространства. Под элементарным объемом в теории фильтрации понимают такой физически бесконечно малый объем, в котором заключено большое число пор и зерен, так что он достаточно велик по сравнению с размерами пор и зерен породы. Для такого элементарного объема вводятся локальные усредненные характеристики системы флюид - пористая среда. В применении к меньшим объемам выводы теории фильтрации становятся несправедливыми. [c.11]

    В промышленном химическом процессе могут протекать одновременно несколько (и даже несколько десятков) простых химических реакций, связанных дополнительно с гидродинамикой потока, переносом массы и тепла. Поэтому для процесса, проводимого в большом масштабе, введем понятие так называемой технической скорости превращения. В общем случае эта скорость будет функцией не только состава системы и температуры, но также скорости [c.203]

    Пограничный слой. Пограничным слоем называют область потока, где на движение среды оказывает заметное влияние присутствие твердой границы. Понятие пограничного слоя было предложено Прандтлем и оказалось весьма удобным при решении задач гидродинамики. Это связано с тем, что в основной массе потока (вдали от стенки) его движение удовлетворительно описывается законами движения идеальной (лишенной вязкости) среды. Существенное влияние вязкости сказывается только в пределах пограничного слоя, но поскольку последний сравнительно тонок, уравнения (2.2) и (2.3) для него можно упростить и сделать их разрешимыми во многих практически важных случаях. [c.65]

    Многие достижения теории теплообмена и гидродинамики основаны на понятии пограничного слоя, также предложенного Прандтлем. Оно позволило мысленно разделить турбулентный поток на три характерные зоны ламинарный слой, переходную область и турбулентное ядро. [c.264]

    В гидродинамике лопастных компрессоров рассматривается также понятие внутреннего напора ступени Н. Он больше теоретического на величину потерь на дисковое трение и утечки. [c.68]


    Понятие вихря, заимствованное из гидродинамики идеальной жидкости, является слишком условным применительно к турбулентным движениям. Скорее можно представить себе вихревые комки как элементы, передающие деформацию сдвига [39, 85]. В силу этого условной величиной является и кинетическая энергия вихревого движения. Обычно вклад турбулентности в движение оценивается по величине отклонения параметров потока от среднего значения (по времени). Опыт показывает, что в турбу-летном потоке любой параметр а (скорость, температура, плотность, концентрация примеси и т. д.) может быть разложен на две составляющие среднюю по времени а и пульсационную добавку Аа а = а + Аа. Пульсационная добавка Аа обладает тем свойством, что ее среднее значение за сколь угодно узкий промежуток времени равно нулю  [c.23]

    I ). ОСНОВНЫЕ ПОНЯТИЯ и УРАВНЕНИЯ ГИДРОДИНАМИКИ [c.5]

    Основные понятия и уравнения гидродинамики [c.39]

    В химической технологии процессы переноса наиболее часто протекают в жидкой, газовой или паровой фазах, обычно при их движении или перемешивании. При этом скорость процессов переноса в значительной мере зависит от гидродинамических условий в аппаратах, в которых эти процессы осуществляются. Во многих случаях гидродинамические условия предсказуемы и их можно направленно регулировать с целью создания в аппаратах оптимальных режимов, поскольку они основаны на достаточно хорошо изученных законах гидродинамики. Поэтому прежде чем перейти к выводу основных законов переноса количества движения, энергии и массы, следует рассмотреть некоторые понятия и определения, лежащие в основе гидравлики, необходимые при выводе этих законов. [c.32]

    Что понимают под гидравликой Гидростатика и гидродинамика, их основные задачи. Сформулируйте понятия идеальной, капельной и упругой жидкостей. Какие силы действуют в реальных жидкостях  [c.61]

    Для анализа теплоотдачи в турбулентном потоке вводят понятие турбулентной теплопроводности которая является аналогом турбулентной вязкости в гидродинамике. Тогда удельный тепловой поток при турбулентном теплообмене в направлении оси X (см. рис. 11-7) выразится так  [c.282]

    Основным понятием гидродинамики внешнего обтекания является пограничный слой — тонкая зона потока в непосредственной близости от стенки, где происходит практически все изменение продольной скорости потока от нулевого значения на самой поверхности (основной постулат гидродинамики вязкой жидкости) до скорости щ внешнего потока теплоносителя. Толщина пограничного слоя много меньше продольного размера тела, поэтому в пределах такого тонкого слоя, во- [c.238]

    Характерным случаем применения понятия черного ящика к исследованиям детерминированных объектов является экспериментальное изучение гидродинамики технологических потоков. При построении математической модели движущихся потоков оказалось необходимым таким методом экспериментально получить выходную величину — реакцию объекта на входное возмущение, которое выбирается исследователем и может быть одним из стандартных сигналов. [c.46]

    Техническая гидродинамика и теплотехника существовали давно. Однако классические физики и химики имели недостаточное представление об этих науках. Аналитической теории турбулентности, турбулентного теплообмена и перемешивания не существует и до сих пор. Инженеры разработали своеобразные методы теории подобия, нашли понятие [c.502]

    Характеристической скоростью частицы называют скорость ее всплывания или падения в неподвижной жидкости. Она является основным параметром, определяющим производительность и гидродинамику колонных аппаратов, поскольку однозначно зависит от физико-химических характеристик системы (разницы плотностей фаз и их вязкости) и размера частиц. Понятие характеристической скорости щироко используется для систем жидкость — жидкость [56], а также для систем жидкость — твердое тело, находящихся в псевдоожиженном состоянии [57]. [c.40]

    До сих пор мы полагали, что среда покоится и диффузионные потоки заметным образом не возмущаются гидродинамическими потоками. Сорбцию молекул или ионов из растворов ведут обычно при перемешивании. В хроматографии и при сорбции в динамических условиях поглощение растворенных частиц ведется из потока. Для определения скорости ноглощения в таком случае уравнения диффузии должны рассматриваться совместно с уравнениями гидродинамики. Вопрос о диффузии из потока к поглощающей сфере был обстоятельно рассмотрен Левичем [2]. Из проведенного им рассмотрения следует, что поток диффузии к поглощающей сфере в движущейся жидкости не распределен равномерно по ее поверхности. Поток диффузии максимален в точке набегания жидкости и убывает на задней стороне сферы. Вблизи поглощающей сферы наблюдается резкий спад концентрации поглощаемых частиц. Это позволяет ввести понятие об эффективном неподвижном диффузионном слое, в пределах которого перенос растворенных молекул или ионов осуществляется только молекулярной диффузией, а вне которого осуществляется полное перемешивание и концентрация постоянна. Толщина диффузионного слоя подбирается так, что если ее значение подставить в решение уравнения диффузии, то получается наблюдаемое на опыте значение диффузионного потока. Многочисленные опыты показали, что толщина эффективного диффузионного слоя зависит от скорости  [c.67]


    Отсюда ясно, что в аэро- и гидродинамике нет необходимости в разграничении понятий времени работы установки (Т) и времени пребывания вещества в аппарате (т), которое в случае протекания химического превращения представляет собой время реакции. [c.378]

    ОСНОВНЫЕ ПОНЯТИЯ И УРАВНЕНИЯ ГИДРОДИНАМИКИ [c.38]

    Метод расчета в дырочной теории основан на применении к задаче о движении понятий макроскопической гидродинамики. Прежде всего, если можно распространить известные результаты из теории макроскопических дырок — пузырьков в жидкости — на область молекулярных масштабов, то дырка данного объема должна иметь сферическую форму как наиболее устойчивую. Поскольку частицы жидкости находятся в тепловом движении, сферическая дырка, во-первых, будет расти в радиальном направлении ( дыхательное движение) и, во-вторых, ее центр будет перемешаться в жидкости. Предполагается, что частицы (ионы расплавленной соли) вне данной дырки представляют идеальную несжимаемую жидкость, среднее движение которой при данном движении дырки определяется решением гидродинамической задачи о перемещении в жидкости сферы с изменяющимся радиусом. Если число дырок не слишком велико, можно считать их гидродинамически независимыми .  [c.122]

    Математику легко убедить себя в том, что теоретическая гидродинамика в основном непогрешима. Так, Лагранж ) писал в 1788 г. Мы обязаны Эйлеру первыми общими формулами для движения жидкостей... записанными в простой и ясной символике частных производных... Благодаря этому открытию вся механика жидкостей свелась к вопросу анализа, и будь эти уравнения интегрируемыми, можно было бы в любом случае полностью определить движение жидкости под воздействием любых сил... Многие из величайших математиков, от Ньютона и Эйлера до наших дней, штурмовали задачи теоретической гидродинамики, веря в это. И в их исследованиях, часто вдохновляемых физической интуицией, были введены некоторые из наиболее важных понятий теории уравнений в частных производных функция Грина, вихревая линия, характеристика, область влияния, ударная волна, собственные функции, устойчивость, корректность задачи —таков неполный список. [c.16]

    Такая аппроксимация соответствует так называемому регулярному режиму кинетики. Понятие о регулярном режиме, к которому процесс асимптотически стремится при достаточно больших временах его проведения, широко используется в гидродинамике и теории теплопроводности [358—360]. С другой стороны, при малых значениях Го, пользуясь операционным методом, можно получить решение для начального нерегулярного режима. Понятие [c.173]

    Большой экспериментальный материал по молекулярной гидродинамике и оптике растворов полимеров позволяет разделять полимеры на гибкоцепные и жесткоцепные в зависимости от проявляемых ими гидродинамических и электрооптических свойств в разбавленных растворах [6, 7]. При этом основным критерием для такого разделения является величина равновесной жесткости, молекулярных цепей, которая характеризует среднюю конформацию макромолекулы — ее размеры и геометрическую форму, принимаемые в растворе в равновесном состоянии. Количественной мерой равновесной жесткости (гибкости) макромолекул может служить длина статистического сегмента Куна А [8] или числс мономерных звеньев в сегменте 5=Л/Я (где К — длина мономерного звена в направлении основной цепи), а также персистентная длина а=/4/2 червеобразной цепи [9], моделирующей макромолекулу. Для подавляющего большинства гибкоцепных полимеров-длина сегмента Куна лежит в интервале 15—30 А [10, 11]. Напротив, у жесткоцепных полимеров А может составлять сотни и тысячи ангстрем [12]. Многие важнейшие свойства полимерных материалов (такие, как возможность кристаллизации, температура стеклования, релаксация механических и электрических свойств и ряд других) существенно зависят не только от равновесной, но также и от кинетической жесткости полимерных молекул. Понятие кинетической гибкости не столь универсально, как равновесной. Кинетическая гибкость, характеризуя кинетику деформации и ориентацию макромолекулы под действием внешнего поля, определяется характером и продолжительностью действия приложенного поля и, следовательно, рассматриваемым физическим процессом. Сведения о кинетической гибкости получают путем исследования скорости протекания процессов, в которых макромолекула переходит из одной конформации в другую. Поэтому мерой кинетической жесткости макромолекулы может служить время, необходимое для изменения конформации цепи под дей ствием внешнего воздействия. Вопрос о соотношении равновесной и кинетической гибкости полимерной цепи является фундаментальной проблемой молекулярной физики полимеров. Количественные сведения о равновесной и кинетической (проявляющейся под действием электрического поля) гибкости цепных молекул могут быть получены при исследовании их электрооптических свойств в разбавленных растворах. [c.35]

    Пленочная модель (табл. III. 1) не учитывает современных представлений о гидродинамике на границе раздела фаз, в частности, в ней отсутствуют понятия пограничного гидродинамического и диффузионных слоев. Поэтому описание массопереноса при ионном обмене на основе этой модели следует считать весьма приближенным. Результаты такого описания не могут быть использованы в современных инженерных методах анализа и расчета процессов ионного обмена. [c.87]

    Наибольший интерес для практики представляют закономерности поведения мелкодисперсной составляющей водонефтяной эмульсии. При этом понятие мелкодисперсная составляющая эмульсии относится к частицам максимальных размеров, порядка 10 мкм. Если учесть, что минимальные размеры частиц в водонефтяной эмульсии 184, 85] могут составлять доли микрона, то очевидно, что абсолютные размеры частиц в мелкодисперсной составляющей могут различаться в десятки и даже сотни раз. Поэтому при рассмотрении закономерностей разрушения брониру10щих оболочек на каплях дисперсной фазы необходимо выяснить их зависимости от размеров капель, а также от температуры, вязкости, гидродинамики потока, концентрации деэмульгатора и др. [c.65]

    В книге изложены основные сведения ио гидродинамике, теплообмену и массообмену применительно к каталитическим процессам в кнпящем слое. Даны основные понятия о катализе газов. Описаны технологические процессы в кипящем слое катализатора по результатам их исследованпй и промышленного применения. [c.2]

    В своем трактате Общие принципы движения жидкостей (1755) Л. Эйлер впервые вывел основную систему уравнений движения идеальной (лишенной трения) жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Л. Эйлеру расширением понятия давления на случай движущейся жидкости. Но Эйлеру (в отличие от ньютоновского представления об ударной природе взаимодействия твердого тела с набегающей на него жидкостью), жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах выдвигается новое для того времени представление об обтекании тела жидкостью. Эйлеру принадлежит первый вывод уравнения сплошности жидкости ( в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 году учеником Галилея - Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении импульса применительно к жидким и газообразным средам, создание теории реактивного колеса Сегнера и многое другое. Роль Л. Эйлера как основоположника теоретической гидродинамики, нре-донределившего своими исследованиями развитие гидродинамики более чем на столетие вперед, общепризнанна. [c.1145]

    Таким образом, при введении понятия ламинарного подслоя расчет турбулентного массообмена сводится к расчету только молекулярной. диффузии. Толщина ламинарного подслоя связана с гидродинамикой яотока уравнением [c.61]

    В некоторых случаях для упроп1,ения решений задач гидродинамики вводится понятие идеальной (невязкой) жидкости. Под идеальной жидкостью в отличие от реальной подразумевают такую условную жидкость, при движении которой не возникает напряжений внутреннего трения. Идеальная жидкость перемещается по трубам и каналам без сопротивлений (без потери энергии на трение). [c.5]

    В разделе 3.1 мы показали, что все гвдродинамические переменные можно получить, зная функцию i. Отсюда следует, что из верного кинетического уравнения доляшы получаться уравнения движения для гидродинамических переменных (уравнения гидродинамики). Таким образом, первое испытание , которое должно пройти предлагаемое кинетическое уравнение, состоит в том, что оно должно привести к уравнениям гидродинамики. Их также называют макроскопическими уравнениями, гидродинамическими уравнениями и уравнениями сохранения. Для того чтобы получить их из уравнения Больцмана, необходимо сначала ввести понятие сумматорных инвариантов. [c.216]

    Для понимания неравновесных процессов роста кристаллов существенны законы теплопроводности, диффузии вещества и гидродинамики. Эти законы обычно устанавливаются в виде феноменологических соотношений, находимых из эксперимента (примером может служить закон Фика),причем коэффициенты в этих соотношениях также устанавливают из опытных данных. Между тем такие законы переноса можно вывести из уравнения переноса Больцмана статистической механики неравновесных процессов (см., например, работу Хуаня [24]). Кроме того, пользуясь понятиями столкновения и средней длины свободного пробега, из этих уравнений можно строго вывести коэффициенты переноса (вязкость, теплопроводность и коэффициент диффузии), по крайней мере для газа в состоянии, близком к равновесному. Можно показать, что для газа из молекул с массой т как теплопроводность, так и вязкость приблизительно пропорциональны ткТ) 1 1а , где а —диаметр молекулы [24]. Вопрос о вычислении этих коэффициентов для жидкостей рассмотрен Райсом [45]. [c.381]


Смотреть страницы где упоминается термин Гидродинамика, понятие: [c.21]    [c.5]    [c.9]    [c.26]   
Процессы и аппараты нефтегазопереработки Изд2 (1987) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамика



© 2025 chem21.info Реклама на сайте