Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты промышленного производств

    Наиболее известными анионоактивными ПАВ являются карбоновые кислоты. Промышленное производство их по своему экономическому значению превосходит производство других анионоактивных ПАВ. [c.12]

    Производство хлористого этила прямым хлорированием этана привлекает в последние годы непрерывно растущий интерес. Около двух третей общего производства хлористого этила потребляется в промышленном производстве тетраэтилсвинца. Первоначально его вырабатывали взаимодействием этанола с соляной кислотой. Затем начало развиваться гидрохлорирование этилена. В настоящее время этот важный для промышленности хлористый алкил вырабатывают всеми тремя методами. Выделяющийся при хлорировании этана газообразный хлористый водород используется для гидрохлорирования этилена или для получения хлористого этила из этанола, что позволяет полностью использовать потребляемый хлор [69 ]. [c.175]


    История техники свидетельствует о том, что технология отдельных производств химической промышленности изменяется со временем, причем изменяются даже такие промышленные производства, как, например, основанный на гомогенном катализе камерный способ получения серной кислоты, в котором, по существу, имеет место то же самое сырье (пирит) и тот же самый конечный продукт (серная кислота). Изменяются главным образом орудия и предметы труда, так как на некоторых участках технологической схемы могут быть изменены технологические условия (например, температура, давление и концентрация) наконец, меняются люди, занятые в производстве, их образование, организация труда и т. д. Если мы широко рассмотрим эти изменения в ряде существующих промышленных производств, то можно найти общее во многих индивидуальных изменениях, так как они обусловлены одной и той же причиной. [c.13]

    Промышленные производства нитрата аммония полагались на исключении исходных веществ, возможности получения которых очень ограничены (аммиак с газового завода, натриевая селитра), и замене их основными исходными веществами, запасы которых практически неограничены (кислород, азот и вода), а также на нахождении такого решения, при котором используется теплота, выделяющаяся при проведении экзотермической реакции взаимодействия аммиака с азотной кислотой, для упаривания раствора нитрата аммония. [c.53]

    Лабораторный метод получения нитрата аммония из аммиака и азотной кислоты лежит в основе промышленных решений. В рассматриваемом случае проблема сводится к нахождению экономичных методов промышленного производства аммиака и азотной кислоты. [c.59]

    До тех пор, пока использование парафинов для синтеза химических продуктов было ограниченным, потребность в них не превышала 70—80 тыс. т в год. Основная масса парафинов использовалась в производстве солидолов, смазочных материалов, в бумажной, спичечной, электротехнической, пищевой и других отраслях промышленности. Позднее парафины во все возрастающем объеме начали использовать в качестве сырья для выработки ряда синтетических про ктов. Первым таким продуктом явились синтетические жирные кислоты. Их производство было организовано на Шебекинском комбинате в 1953 г. Позднее были сданы в эксплуатацию новые крупные мощности по выработке СЖК. [c.138]

    ЩИХ технику реакций в нужном направлении и при условиях, наиболее приемлемых для заводских масштабов. Такие важнейшие процессы химической технологии, как синтез н окисление аммиака, контактное получение серной кислоты и многие другие, всецело основаны на результатах физико-химического изучения этих реакций. Велико и постоянно возрастает значение физикохимических исследований в развитии химической промышленности (основной органический синтез, нефтехимия, производство пластических масс и химического волокна и др.). Важную роль играют физико-химические исследования и для многих других, отраслей народного хозяйства (металлургии, нефтяной промышленности, производства строительных материалов, сельского хозяйства), а также для медицины и др. [c.13]


    Указанный метод имеет существенные преимущества не требуется применения серной кислоты и создания дорогостоящих и сложных агрегатов по ее концентрированию, уменьшаются капитальные вложения и затраты на эксплуатацию. Создание впервые в Советском Союзе промышленного производства изопропилового спирта прямой гидратацией пропилена явится большим достижением и позволит развивать его наиболее экономичным методом. [c.373]

    Первый том двухтомного издания, характеризующего современное состояние и экономику разнообразных каталитических производств в ряде зарубежных стран, посвящен описанию крупнотоннажных каталитических процессов гидрообработки нефтяного сырья, риформинга, производства полиэтилена и полипропилена, получения окисн этилена и дихлорэтана, карбонилирования метанола в уксусную кислоту, Особое внимание уделено переходу от лабораторного получения катализаторов к их промышленному производству, а также методам испытаний катализаторов в лабораторных и опытно-промышленных реакторах. Авторы — ведущие специалисты химических и нефтехимических фирм США. [c.5]

    Работы [87—100], проведенные по определению оптимального фракционного состава парафина для СЖК, позволили организовать его промышленное производство. При переработке на СЖК парафина, который содержит 55—60 объемн. /о фракций, выкипающих до 400°С, выход целевой фракции кислот Сю—Сго на 13% больше (за счет снижения выхода кубового остатка), чем при использовании парафина по ГОСТ 9348—60. [c.22]

    К числу неорганических веществ, получаемых при переработке нефти и газа, относятся также сера и серная кислота. Серная кислота является очень важным продуктом, широко применяемым в химической промышленности. Производство серной кислоты в Советском Союзе составляло в 1963 г. около 7 млн. т. Наиболее крупным производителем серной кислоты являются США, где в 1963 г. было получено около 19 млн. т. Производство серной кислоты в Советском Союзе за последние годы выросло, и в 1970 г. его предполагается довести его до 16 млн. т. [c.357]

    Хотя получению и применению дифеновой кислоты посвящено много работ, однако промышленное производство ее не организовано, так как она не обладает решающими преимуществами перед фта . 1е ым ангидридом. [c.107]

    Многие присадки при относительно небольшом расходе и при использовании серной кислоты умеренной концентрации обеспечивают очень глубокое удаление тиофена, соответствующее требованиям к малосернистым бензолам высших марок (табл. 37). Получившие промышленное применение присадки, такие, как пипериленовая фракция и отходы производства бутадиена, на 80—90% н более состоят из непредельных соединений. Последние полностью расходуются на алкилирование тиофена и сополимеризацию друг с другом в процессе сернокислотной обработки бензола. Поэтому при нормальном ведении процесса продукт не загрязняется посторонними примесями, получаемый бензол характеризуется низкими показателями окраски и бромным числом и по всем остальным показателям отвечает требованиям стандарта. Длительный (пятнадцатилетний) опыт промышленного производства бензола с применением различных алкилирующих присадок и использование полученного продукта самыми квалифицированными потребителями в различных отраслях промыш ленности убедительно подтверждают его высокое качество. [c.220]

    Триполифосфорную кислоту Н5Р3О10 получают, обрабатывая сероводородом триполифосфат меди. Эта кислота не коагулирует белок гидратируется в пирофосфорную и ортофосфорную кислоты. Промышленное производство кислоты отсутствует, но в больших масштабах вырабатывается триполифосфат натрия. [c.55]

    В США фирмой TVA была построена опытно-промышленная установка и затем большой промышленный цех на заводе в Саус-Пойнте. Разложение фосфата производили смесью 42%-ной азотной кислоты и 80%-ной термической фосфорной кислоты. Промышленное производство удобрений разложением фосфата смесью азотной и фосфорной кислот осуществлено также во Франции, Бельгии и других странах [8, 13]. Благодаря тому, что этот способ связан с расходом дорогой фосфорной кислоты без уменьшения расхода азотной кислоты, он не нашел в производстве сложных удобрений широкого применения, но его считают перспективным в связи с развитием производства фосфорной кислоты [14]. [c.189]

    Метод эксперимента. Дистиллированную сорбиновую кислоту промышленного производства перед использованием перекристаллизовывали из воды и высушивали на воздухе до постоянного веса. Этанол применяли особой степени чистоты, остальные спирты — квалификации х. ч. Катионит КУ-2 с 7% дивинилбензола, применявшийся в качестве катализатора, переводили общепринятым способом в водородную форму, а затем высушивали при 110° С до постоянного веса. Для сравнения отдельные кинетические оныты ставили с заменой катионита на и-толуолсульфокислоту, которую не подвергали специальной очистке. [c.326]


    В качестве смачивающих, пенообразующих и эмульгирующих веществ, или в виде продуктов оксиэтилирования, как всиомогатольиые материалы в текстильной промышленности. Смесп жирных кислот, содержащихся в головном погоне, с высокомолекулярными /кирными кислотами с большим успехом применяют в производстве смазочных материалов. Вопрос о применении определенных фракций жирных кислот для производства мыл выходит за пределы собственно нефтехимии. [c.165]

    Реакция сульфоокисления дает возможность осуществить простой и дешевый способ промышленного производства алифатических сульфокислот, поскольку в противоположность углеводородам ароматического ряда парафины не сульфируются при непосредственном воздействии 1К0 нцент1рир01ванн0Й серной кислоты или олеума. [c.481]

    Собственная ионизация жидкого HNO3 незначительна. С водой HNOg смешивается в любых отношениях. Его растворы — сильная кислота, называемая азотной. В лаборатории азотную кислоту получают действием концентрированной серной кислоты на нитрат натрия. Промышленное производство HNOg осуществляется по стадиям скисление HgN в N0 кислородом воздуха на платиновом катализаторе  [c.356]

    Фтороалюминаты щелочных металлов в воде растворяются с трудом. Наибольшее применение (для получения А1, Fg, эмалей, стекла и пр.) имеет Na AIFg. Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой  [c.459]

    Присоединение хлорноватистой кислоты к этилену с образованием этиленхлоргидрина — одна из наиболее важных химичес1 их реакций, с которых началось промышленное производство производных этилена в начале 1920 г. Лабораторный метод получения этиленхлоргидрина этим способом был описан Кариусом в 1863 г. С тех пор хорошо известна необыкновенная реакционная способность этого хлоргидрина и его почти количественное превращение в окись этилена, которая в настоящее время приобрела большое значение. Нефтяной газ с высоким содержанием этилена был известен и получался заводским путем из жиров уже с 1823 г., а из нефтяного газойля примерно с 1873 г. и до настоящего времени. Промышленное производство этиленовых производных в США никогда не базировалось в сколько-нибудь значительных размерах на исиользовании этилена, содержащегося в газах крекинга, получающихся как побочный продукт при производстве бензинов. Развитие этого направления использования этилена сильно ускорилось возможностями, появившимися вследствие открытия Гомбергом реакции этилена с разбавленной хлорноватистой кислотой в системе вода— хлор  [c.370]

    Ароматические нитросоединения нолучаются обычно прямым нитрованием соответствующих соединений. Ароматические нитросоединения применяются в больших количествах как красители и взрывчатые вещества, а также в парфюмерной промышленности. Они используются также в качестве растворителей и химических реагентов. Нитрогруппа может действовать как хромофорная группа в красителях, особенно если имеется несколько нитрогрупн и они располагаются в кольце таким образом, что становятся частью сложной сопряженной системы. Значительно чаще нитрогруппа используется как исходная группа для получения соответствующего анилина в результате применения восстановления в довольно мягких условиях. Использование нитросоединений в промышленности взрывчатых веществ направлено в первую очередь на военные цели. Промышленное производство взрывчатых веществ основано больше на нитроглицерине, т. е. на сложном эфире азотной кислоты, чем на истинных нитросоединениях. Некоторым, весьма существенным исключением являются нитрокарбонитратные пороха, содержащие нитрат аммония и незначительные количества тринитротолуола или динитротолуола. В парфюмерной промышленности нитросоединения используются в качестве синтетических мускусов. Большая группа производных полинитро-/к/)т-бутилбензола обладает запахом, напоминающим мускус. [c.543]

    Продукты окисления. Наиболее распространенным промышленным процессом окисления олефина является окпсление этилена, который окисляется воздухом над серебряным катализатором при температурах 225—325° С и дает чистую окись этилена (побочных продуктов, кроме воды и двуокиси углерода, не получается). Выход окиси этилена колеблется в пределах 55—70% [279—281]. Аналогичные окислы высших олефинов можно получить из пропилена, бутадиена, октена, додецена и стирола через промежуточную стадию хлоргидрина или нри номош и реакции с надуксусной кислотой. Промышленное значение пока приобрело только производство окиси пропилена. [c.582]

    Уксусная кислота восстанавливается в соотв10тственный альдегид, и таким образом получается гамма кислородсодержащих соединений. Несмотря на зна штельный интерес этих исолбдований, промышленное производство синтеза пока еш)е не осущеотвлено. [c.456]

    Основным потребителем нефтяных углеводородов (отчисляемых в фонд нефтехимического сырья) в период до 2005 г. останется производство всего комплекса углеводородных мономеров и полимеров и на базе синтетических пленок, волокон и пластмасс. Эта область промышленного производства в мировом масштабе будет развиваться опережающими темпами независимо от общего спада нро.мышленного производства в капиталистических странах. Аналогичное положение сохранится и в производстве химикатов — различных производных углеводородов, т. е. органических кислот, а.минов, гликолей, хлоридов и т. н. [c.362]

    Серная кислота Н2804 является одним из важнейших продуктов химической промышленности. В технике ее получают из серы, сульфидов металлов и отходов различных промышленных производств, содержащих сернистый газ. [c.34]

    Печи предназначены для промышленного производства хлористого водорода и попутно сульфата натрия. Этот метод основан на взаимодействии серной кислоты с хлоридом натрия, в результате которой удаляется газообразный хлористый водород и сульфат натрия. Реакция в нечи протекает по следующему уравнению  [c.69]

    Производство монохлоруксусной кислоты прямым хлорированием уксусной кислоты. Как уже отмечалось выше, в производстве гербицидов и карбоксиметилцеллюлозы одним из основных полупродуктов является монохлоруксусная кислота, производимая в настоящее время омылением трихлорэтилена. Вследствие высокой коррозионности процесса сталкиваются с большими трудностями, затрачивается много сил и средств на ремонт и замену оборудования и коммуникаций. В последнее время водном из институтов Госхимнефтекомитета разработан непрерывный 1роцесс хлорирования уксусной кислоты с получением монохлоруксусной кислоты. Создание промышленного производства монохлоруксусной кислоты по новой технологии позволит удовлетворить потребность развивающейся промышленности гербицидов и КМЦ в упомянутой кислоте. Новая технология по данным научно-исследовательской организации позволяет резко снизить затраты материалов и рабочей силы на производство, что обеспечит снижение себестоимости гербицидов и карбоксиметилцеллюлозы. [c.375]

    Промышленное производство этилбензола было организовано в 1936 г. В период Второй мировой войны в ряде стран широкое применение в качестве высокооктановой добавки для карбюраторных авиационных двигателей нашел кумол (изопропилбензол). С переходом авиации на реактивное топливо интерес к производству алкилбензолов продолжал возрастать. Это объясняется тем, что резко возросла потребность в ряде сырьевых источников, получение которых связано с алкилированием бензола и его гомологов. Например, из этилбензола получают стирол, который нашел широкое практическое применение, из кумо-ла—фенол, ацетон, а-метилстирол. Из диалкилбензолов синтезируют терефталевую кислоту и фталевый ангидрид. Сульфированием нонил- и додецилбензола производят сульфонаты — высокоэффективные поверхностно-активные вещества. Моно- и полиалкилнафталины —великолепные теплоносители, а их сульфонаты — эмульгаторы в производстве синтетического каучука. В широком масштабе проводится алкилирование бензола и нафталина тримерами и тетрамерами пропилена, димерами и три-мерами бутенов и пентенов, а также высшими олефинами. Алкилирование является перспективным процессом в связи с необходимостью разработки новых видов сырья для производства полимеров, синтетического каучука, новых компонентов топлив, присадок и масел. [c.6]

    Окисление углей кислородом в вод но щелочной среде. Эта реакция положена в основу промышленного производства поликарбоновых кислот. Полул<ирный уголь превращается в растворимые кислоты с выходом около 50% (по углероду) при температуре 250—300° С и под давлением 50—70 ат. Большая часть этих кислот имеет 2—4 ароматических ядра и используется в некоторых отраслях производства, например в производстве полиэфирных смол. [c.37]

    Производство суперфосфата. Химическая промышленность выпускает простой и двойной суперфосфаты. Простой суперфосфат — самое распространенное фосфорное удобрение. Он представляет собой порошок (или гранулы) серого цвета, содержащий в основном монофосфат кальция Са (Н2РО4) 2 Н2О и сульфат кальция Са804-0,5Н20. В состав суперфосфата входят примеси фосфаты железа и алюминия, кремнезем, а также фосфорная кислота. Сущность производства суперфосфата состоит в разложении природных фосфатов серной кислотой. Процесс получения суперфосфата при [c.145]

    Полиолы легко окисляются часть окислителей действует специфично, другие — неселективны. При осторожном окислении бромной водой получается смесь альдоз и кетоз так, из сорбита получают смесь )-глюкозы, 1)-фруктозы, -гулозы и -сорбозы. Раньше эту реакцию использовали,при синтезе аскорбиновой кислоты из сорбита в настоящее вреягя в промышленном производстве ви- [c.13]

    Служащие исходным сырьем для получения как силиконов, так и кремнеуглеводородов (тетраалкил- или алкиларилсила-нов), органогалогенсиланы могут получаться не только магнийорганическим, но и прямым синтезом. Последний получил свое название в связи с тем, что кремнийорганические соединения по этому методу получаются путем воздействия органогалогенидов непосредственно на элементарный кремний, минуя стадию получения галогенида кремния или эфира орто-кремневой кислоты. С точки зрения технологии и экономики производства это дает значительные выгоды, а потому прямой. метод получил значительное распространение в промышленном производстве силиконов. Реакция прямого синтеза, выражаемая в основном уравнением [c.443]

    Потребность в бензойной кислоте резко возросла после организации на ее основе производства фенола, капролактама и, в меньших масштабах, терефталевой кислоты. В связи с этим было создано крупное промышленное производство бензойной кислоты из толуола жидкофазным окислением кислородом воздуха. Применявшиеся ранее способы получения бензойной кислоты — гидролизом трихлортолуола, декарбоксилированием фталевой кислоты, окислением толуола азотной кислотой, перманганатом калия, хромовой смесью — непригодны для крупного промышленного производства и представляют лишь исторический интерес. Жидкофазное окисление толуола осуществляется в среде углеводорода либо в среде полярного растворителя [40, с. 209—212]., [c.69]

    Псевдокумол, на базе которого уже организовано промышленное производство тримеллитовой кислоты и псевдокумидина (см. гл. 2), вначале в сравнительно небольших объемах производили из каменноугольного сольвента, сочетая процессы ректификации, сульфирования и гидролиза сульфокислот [73]. Относительная сложность и многостадийность процесса при невысокой эффективности ректификации не позволяли получать 98%-ный псевдокумол с выходом более чем 24—27% [74]. [c.267]

    Появление синтетических методов производства уксусной кислоты связано с разработкой и промышленной реализацией реакции получения ацетальдегида по Кучерову. В1910—1911 гг. патентуется способ производства уксусной кислоты окислением ацетальдегида, а в годы первой мировой войны в Германии и Канаде по этому методу было организовано промышленное производство. С некоторыми технологическими изменениями этот метод сохранил свое значение и в течение более пятидесяти лет является одним из основных. [c.311]

    Первая установка по производству синтетической уксусной кислоты каталитическим окислением ацетальдегида была пущена на Чер-нореченском химическом заводе в 1932 г., а в 1948 г. было организовано ее промышленное производство. К 60-м годам уксусная кислота производилась также пиролизом ацетона через кетен, окислением узких фракций бензина, а также выделением из продуктов окисления твердого парафина. В результате развития синтетических методов производства уксусной кислоты удельный вес их вырос с 50% в 1963 г. до 70% в 1965 г. и до 90% в 1970 г. За эти же годы общий объем производства уксусной кислоты в стране вырос в три раза. [c.312]


Смотреть страницы где упоминается термин Кислоты промышленного производств: [c.173]    [c.148]    [c.209]    [c.371]    [c.89]    [c.588]    [c.185]    [c.167]    [c.257]    [c.267]    [c.335]   
Справочник химика Том 5 Издание 2 (1966) -- [ c.144 , c.155 , c.250 , c.254 ]

Справочник химика Изд.2 Том 5 (1966) -- [ c.144 , c.155 , c.250 , c.254 ]




ПОИСК







© 2024 chem21.info Реклама на сайте