Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гормоны группы механизм действия

    Минералокортикоиды, воздействуя на почки, регулируют водно-солевой обмен в организме. Самым активным в этой группе гормонов является альдостерон, обеспечивающий транспорт Na в почечных канальцах. Кроме того, он стимулирует выделение с мочой К" и иона аммония. Механизм действия альдостерона связан с увеличением числа натриевых каналов в мембранах почечных клеток, а также с индукцией синтеза АТФ, необходимого для транспорта ионов. [c.159]


    МЕХАНИЗМ ДЕЙСТВИЯ ГОРМОНОВ И ГРУППЫ (ПЕПТИДНЫХ ГОРМОНОВ) [c.161]

    Существование раздельных путей для синтеза и распада гликогена означает, что эти процессы должны подчиняться строгой регуляции. Полное проявление активности обеих групп реакций в одно и то же время привело бы к непроизводительному гидролизу АТР. В действительности синтез и расщепление гликогена координированно регулируются таким образом, что глыко-ген-синтаза оказывается почти неактивной при полной активности фосфорилазы и наоборот, На обмен гликогена большое влияние оказывают специфические гормоны. По-липептидный гормон инсулин (разд, 2,6) повышает способность печени синтезировать гликоген. Механизм действия инсулина пока не раскрыт. Высокое содержание инсулина в крови говорит о состоянии сытости, тогда как его низкое содержание является сигналом голода (разд. 23,6), Значительно лучше изучен механизм действия адреналина и глюкагона, эффект которых противоположен эффекту инсулина. Мышечная активность или подготовка к ней приводит к высвобождению адреналина мозговым веществом надпочечников, Адре-  [c.122]

    Токсическое действие. Р. отличается высокой токсичностью для любых форм жиз-Бш, широким спектром и большим разнообразием клинических проявлений токсического действия в зависимости от свойств веществ, в виде которых металл поступает в организм (пары Р., неорганические и органические соединения), пути поступления и дозы. В основе механизма действия Р. лежит блокада биологически активных групп белковой молекулы (сульфгидрильных, аминных, карбоксильных и др.) и низкомолекулярных соединений с образованием обратимых комплексов с нуклеофильными лигандами. Установлено включение Р.(II) в молекулу транспортной РНК, играющей центральную роль в биосинтезе белков. В начальные сроки воздействия малых концентраций Р. имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Отмечены фазовые изменения в содержании катехоламинов в надпочечниках. Наблюдается возрастание моноаминоксидазной активности митохондриальной фракции печени. Показано стимулирующее действие неорганических соединений Р. на развитие атеросклеротических явлений, но эта связь нерезко выражена. Пары Р. проявляют нейротоксичность, особенно страдают высшие отделы нервной системы. Вначале возбудимость коры больших полушарий повышается, затем возникает инертность корковых процессов. В дальнейшем развивается запредельное торможение. Неорганические соединения Р. обладают нейротоксичностыо. Имеются сведения о гонадотоксическом, змбриотоксиче-ском и тератогенном действии соединениях Р. [c.484]


    По химическому строению гормоны делят на три группы фенил-алкиламины, пептиды и стероиды. Представители всех этих классов гормонов рассмотрены в соответствующих частях курса. Механизм действия гормонов очень сложен и до конца не выяснен. [c.572]

    По механизму действия и основному конечному эффекту все гормоны делят на три группы  [c.378]

    МЕХАНИЗМ ДЕЙСТВИЯ ГОРМОНОВ I ГРУППЫ [c.159]

    Аллостерическая регуляция ферментативной активности. Аллостеричес-кий тип регуляции активности характерен для особой группы ферментов с четвертичной структурой, имеющих регуляторные центры для связывания аллостерических эффекторов (ингибиторов или активаторов). Механизм действия аллостерических эффекторов заключается в изменении конформации активного центра, затрудняющем или облегчающем превращение субстрата. Некоторые ферменты имеют несколько аллостерических центров, чувствительных к различным эффекторам. Роль аллосте-рического эффектора зачастую выполняют метаболиты, гормоны, ионы металлов, коферменты, а иногда и молекулы субстрата. Аллостерические ферменты отличаются от прочих ферментов особой S-образной кривой зависимости скорости ферментативной реакции от концентрации субстрата (рис. 2.9). Такой характер зависимости свидетельствует о том, что активные центры субъединиц функционируют кооперативно, т. е. сродство каждого следующего активного центра к субстрату определяется степенью насыщения предыдущих центров. [c.119]

    Рассмотрим строение, функции, механизм действия и пути биосинтеза отдельных групп гормонов в соответствии с их химической классификацией. [c.443]

    По всей вероятности, в действии этой большой группы гормонов используются совершенно разные механизмы внутриклеточной сигнализации, но традиционные посредники определенно в этом не участвуют. [c.169]

    Общая схема действия гормонов этой группы показана на рис. 44.1. Их липофильные молекулы диффундируют сквозь плазматическую мембрану любых клеток, но только в клетках-мишенях они находят свой специфический рецептор, имеющий высокую степень сродства к гормону. Образуется комплекс гормон — рецептор, который далее подвергается активации . В результате этой реакции, зависящей от температуры и присутствия солей, меняется величина, конформация и поверхностный заряд комплекса, и он приобретает способность связываться с хроматином. Вопрос о том, где происходит образование и активация комплекса—в цитоплазме или ядре,— остается спорным, но он не очень существен для понимания процесса в целом. Гормон-рецепторный комплекс связывается со специфической областью ДНК и активирует либо инактивирует специфические гены. В результате избирательного воздействия на транскрипцию генов и синтез соответствующих мРНК происходит изменение содержания определенных белков, что сказывается на активности тех или иных процессов метаболизма. Эффект каждого из гормонов описываемой группы совершенно специфичен как правило, их влияние сказывается менее чем на 1% белков или мРНК клет-ки-мишени. Здесь мы обсуждаем ядерный механизм действия стероидных и тиреоидных гормонов, поскольку этот механизм хорошо изучен. Однако имеются данные о прямом эффекте указанных гормонов на компоненты цитоплазмы и различные органеллы. [c.159]

    Снижают функцию щитовидной железы тиоцианат и вещества, содержащие аминобензольную группу, а также микродозы йода. Механизм действия антитиреоидных веществ окончательно не выяснен. Возможно, они оказывают ингибирующее действие на ферментные системы, участвующие в биосинтезе тиреоидных гормонов. [c.267]

    Другой гормон — мелатонин (8.1), секретируемый эпифизом,— регулирует реакцию на свет или альбедо у многих видов, ингибируя процесс потемнения. Адреналин (8.2) и норадреналин (8.3), действующие как нейрогормоны, и тироксин (8.4), действующий как инициатор морфологической диффе-ренцировки, также могут влиять на пигментацию и изменение окраски. В качестве вторичного посредника в механизме действия МСГ и адреналина при изменении окраски у позвоночных, вероятно, участвует сАМР (3, 5 -цпклическпй аденозинмо-нофосфат). Большое значение для функционирования этих гормонов имеют тиоловые группы белков. [c.292]

    В 1902 г. английские физиологи Э. Старлинг и У. Бейлисс установили, что слизистая оболочка двенадцатиперстной кишки при действии на нее соляной кислоты выделяет в кровь вещество, которое стимулирует секрецию сока поджелудочной железой. Э. Старлинг и В. Бейлисс назвали его секретином и позднее доказали, что секретин — лишь первый представитель большой группы еще не открытых биологически активных вешеств. В 1905 г. Э. Старлинг предложил называть вещества, относящиеся к этой группе, термином гормоны (от греч. орцаю — привожу в движение, побуждаю). В последующие десятилетия были выделены и хнмическн охарактеризованы десятки гормонов. В последние годы наука вплотную подошла к пониманию механизма действия их на молекулярном уровне. [c.238]


    Механизм возникновения активности фторкортикоидов пока не установлен, однако выдвинута гипотеза, согласно которой у 9а-фторза-мещенного производного под влиянием сильного электроноакцепторного эффекта фтора увеличивается кислотность гидроксильной группы в положении 11 и усиливается ее связь с рецепторными участками организма. Кроме того, фтор может оказывать тормозящее действие на реакцию превращения гидроксильной группы в положении 11 в более инертную 11-кетогруппу, вследствие чего активность гормона увеличивается. Выдвинута также гипотеза, согласно которой важную роль играет образование фтором водородной связи с рецепторными участками. Как показано ниже, недавно было высказано предположение, что механизм действия противовоспалительных препаратов связан с их участием в системе биосинтеза простагландинов. Дальнейшее углубление представлений о механизме воспалительного процесса и механизме действия противовоспалительных препаратов сделает возможным разработку еще более эффективных лекарств. [c.515]

    Гормоны, образующиеся в эндокринных железах, поступают из этих желез непосредственно в кровоток, который доставляет их к месту действия. В течение последних нескольких лет выяснено химическое строение тех гормонов, которые являются производными стеринов, формула же адреналина — гормона мозгового вещества надпочечников — известна умге давно. Указанные гормоны представляют собой соединения со сравнительно небольшим молекулярным весом, гормоны же щитовидной, пара-щитовидной и поджелудочной желез, а также гормоны гипофиза представляют собой белки или производные белков с высоким молекулярным весом. Они отличаются от гормонов с низким молекулярным весом не только величиной своих молекул, но также своей термолабильностью и самим механизмом действия. Изучение строения этих гормонов, выделенных при помощи обычных методов химии белка, показало, что они построены из хорошо известных аминокислот. До сих пор, однако, не удалось установить, какие именно молекулярные группы определяют высокую физиологическую активность этих гормонов. В этой области дело обстоит так же, как и в области изучения гидролитических ферментов, относительно строения функциональных групп которых мы также знаем очень мало, несмотря на многочисленные теории, выдвинутые в последнее время для объяснения механизма ферментативного действия. В химии гормонов положение еще менее удовлетворительно, так как мы не имеем даже возможности выдвинуть какую-либо более или менее обоснованную теорию механизма их действия и должны ограничиваться простым описанием их свойств. При дальнейшем изложении особое внимание будет уделено описанию тех свойств, которые отличают один гормон от другого и всю группу белковых гормонов от других белков. [c.312]

    Решамздее зшчение для аетивности пептида имеет а-карбоксильная группа ас-парш-иновой кислоты и концевая амидная группа. Молекулярный механизм действия этого гормона почти не изучен. [c.271]

    Вторая основная группа состоит из водорастворимых гормонов, которые присоединяются к плазматической мембране клеток-мишеней. Воздействие присоединившихся к поверхности клетки гормонов на внутриклеточные процессы обмена опосредуется промежуточными соединениями, называемыми вторыми посредниками (первый посредник — сам гормон) последние образуются в результате взаимодействия лиганд—рецептор. Концепция второго посредника возникла в результате работ Сазерленда, показавшего, что адреналин связывается с плазматической мембраной эритроцитов голубя и увеличивает внутриклеточную концентрацию с AM Р. В последующих сериях исследований было выявлено, что с АМР опосредует метаболические эффекты многих гормонов. Гормоны, в отношении которых доказан такой механизм действия, составляют группу U.A. Некоторые гормоны используют в качестве внутриклеточного сигнала кальций или метаболиты сложных фосфоинозитидов (или то и другое вместе), хотя первоначально предполагалось, что они действуют через с AM Р. Эти гормоны включены в группу II.Б. Для большой и очень интересной группы II.В внутриклеточный посредник окончательно не установлен. В качестве возможных кандидатов на эту роль для инсулина рассматривали целый ряд соединений сАМР, GMP, Н2О2, кальций, несколько коротких пептидов, фосфолипид, сам инсулин и инсулиновый рецептор, но пока не найдено ни одного, отвечающего необходимым критериям. Может оказать- [c.158]

    А. Структура и механизм действия. Тиреотропный гормон представляет собой гликопротеин с ар-димерной структурой и мол. массой около 30000. Подобно другим гормонам данной группы, он связывается с рецепторами плазматических мембран и активирует аденилатциклазу. Последующее увеличение уровня сАМР обусловливает действие ТТГ на биосинтез тиреоидных гормонов. Менее ясна связь сАМР с трофическими воздействиями ТТГ на щитовидную железу. [c.179]

    ФАП, действующие на поверхности клетки. В эту группу попадают ФАП, активность которых связана с их взаимодействием с рецепторами на поверхности мембран клеток-мищеней, а проникновения ФАП внутрь клетки не требуется (например, в случае полимерных производных некоторых гормонов). Сочетание ФАВ с носителем в данном случае должно проводиться так, чтобы они оставались активными и в связанном состоянии, т. е. сохранялась бы способность к взаимодействию с соответствующими рецепторами. Последнее означает сохранение зарядов в нужных точках молекулы ФАВ и возможность принятия ею необходимой конформации на рецепторе. Эти требования накладывают более жесткие ограничения на конструкцию узла связывания ФАВ с полимером, чем при гидролитическом механизме действия, так как многие функциональные группы необходимо сохранить ннтактными. Поэтому в большинстве случаев между полимером и ФАВ используют вставку , как при связывании лигандов с нерастворимым носителем при аффинной хроматографии. О молекулярном конструировании ФАП этого типа ( истинных полимерных лекарствах ) см. разд. 4.1. [c.38]

    Механизм действия стероидных гормонов. Как видно из приведенньпе вьппе данных о функциональной активности рассмотренных стероидных гормонов, их влияние распространяется на многочисленные и разнообразные химические процессы в тканях организма. Следовательно, в отличие от ферментов или витаминов гормоны изменяют скорость протекания не какой-то конкретной химической реакции или группы сходных реакций, а затрагивают в обмене веществ некие фундаментальные процессы. Последние, в свою очередь, сказываются на самых различных сторонах обмена веществ. Указанный подход лежит в основе современных представлений о механизме действия гормонов. [c.445]

    Возникающее при этом соединение—циклический аденозинмонофосфат, открытое в 1957 г. одновременно двумя группами исследователей—Е. Сатерлэн-дом с сотр. и Д. Маркхэмом с сотр., оказалось тем веществом, которое передает гормональный сигнал метаболическим системам клетки, т. е. является, по существу, вторичным посредником в передаче этого сигнала (первичный посредник— рецепторный белок, воспринимающий гормональный сигнал). Дело в том, что цАМФ является аллостерическим регулятором протеинкиназ, при участии которых фосфорилируются гистоны и негистоновые белки хроматина (это сказывается на метаболической активности генома клетки и, в частности, на уровне биосинтеза мРНК), рибосомальные белки и белковые факторы трансляции (это отражается на интенсивности новообразования белков в рибосомальном аппарате клетки), многие ферменты (что предопределяет степень их активности) и т. п. Поскольку это затрагивает фундаментальные стороны обмена веществ, то вполне объяснимы биохимические и физиологические явления, наблюдаемые при недостатке или избытке пептидных гормонов. Ряд конкретных примеров такого механизма действия пептидных гормонов был рассмотрен ранее при изучении реакции фосфоролиза гликогена, липолитических процессов и др. [c.456]

    Рецепторы являются белками, которые, будучи центрами связывания и действия физиологических эффекторов (гормонов, нейромедиаторов), передают внеклеточные сигналы внутрь клетки. Они состоят из узнающих и связывающих белков, принимающих сигнал, и из эффектора, трансформирующего этот сигнал в определенный эффект. Эффектор может быть ионным каналом, транспортной системой или ферментом. Мы обсуждали различные модели механизма сопряжения связывания лиганда (гормона, медиатора) и его действия самая вероятная из них основана на аллостерической модификации рецепторного белка. Функции связывания и осуществление эффекта относятся, возможно, к различным субъединицам рецепторного комплекса. В качестве примера можно привести гормончувствительную аденилатциклазу, которая в качестве эффектора может быть отделена от связывающего участка и биохимически очищена. Согласно гипотезе плавающего рецептора, этот фермент латерально диффундирует в клеточной мембране и регулируется разнообразными рецепторами. Внеклеточный сигнал переносится к этому ферменту через третий компонент — группу сопрягающих белков, называемых N-белками. Они могут обладать стимулирующим (Ns) или ингибирующим (N ) действием. В свою очередь N-белки активируются GTP, а функция рецеп- [c.299]

    Согласно общепринятому представлению биологическре действие стероидных гормонов осуществляется через их взаимодействие с белковыми рецепторами, образующими со стероидной молекулой активированный комплекс, переносящий илшульс действия на ядерный акцептор. Считается вероятным, что стероид-рецепторное взаимодействие разыгрывается по двухцеытровому механизму, причем в качестве активных центров стероидной молекулы выступают функциональные группы в 3- и 17- или 20-положении стероида [1 ]. При этом в качестве условия функциональной активации комплекса лиганд-рецептор рассматривается изменение геометрии входящей в него белковой молекулы [2]. [c.107]

    Регулятор (преобразователь). Он представляет собой белки, связанные и с рецептором, и с аденилатциклазой. Фактически это два белка, имеющие сродство к ГТФ, поэтому их называют G-белки. Один из этих белков является активатором (стимулятором) аденилатциклазы (G ,), другой — ингибитором (Gjj,g). Каждый G-белок состоит из трех полипептидных цепей (а, р и у). В состоянии покоя тример G-белка ассоциирован с ГДФ. Молекулярные механизмы, связанные с трансляцией и усилением сигнала, заключаются в следующем. Гормон, взаимодействуя с рецептором, изменяет его конформацию, при этом происходит диссоциация комплекса G5,-бeлoк-ГДФ. Кроме того, сам G-белок диссоциирует на 3,у-димер и а-субъединицу, к которой присоединяется ГТФ. Этот комплекс взаимодействует с сульфгидрильной группой аденилатциклазы и активирует данный фермент. Активная аденилатциклаза катализирует процесс синтеза цАМФ из АТФ. Ингибиторное действие Gjj g-белка [c.135]

    Первая группа методов особенно широко использовалась в начальной стадии работ по полному синтезу — при разработке путей получения эстрогенных гормонов. Преимуш,ество этого типа образования колец состоит в возможности введения лишь одной боковой цепи, которая затем циклизуется в орто-положении. Можно различить три вида такого рода циклизаций в зависимости от того, участвуют ли в них карбоксильные, карбонильные или гидроксильные (или эквивалентные им) группы. Однако во всех случаях механизм циклизации принципиально один и тот же — действие кислотных катализаторов (А1С1д, РаОб и др.) приводит к образованию карбокатионов различных типов, которые затем атакуют ароматическое кольцо. [c.30]

    Передняя доля гипофиза продуцирует больщое количество гормонов, стимулирующих различные физиологические и биохимические процессы в тканях-мищенях. Кроме того, гормоны, находящиеся в близком родстве с некоторыми гормонами передней доли гипофиза, синтезируются плацентой. По установивщейся традиции эти гормоны рассматривались порознь, однако новые исследования механизма их синтеза и внутриклеточных посредников их действия позволяют объединить указанные гормоны в три общие группы 1) группа, включающая гормон роста, пролактин и хорионический соматомаммотропин 2) группа гликопротеиновых гормонов и 3) пептиды семейства проопиомеланокортина. [c.172]


Смотреть страницы где упоминается термин Гормоны группы механизм действия: [c.809]    [c.508]    [c.24]    [c.193]    [c.425]    [c.161]    [c.161]    [c.282]    [c.145]    [c.403]    [c.420]    [c.84]    [c.159]    [c.159]   
Биохимия человека Т.2 (1993) -- [ c.159 , c.166 ]

Биохимия человека Том 2 (1993) -- [ c.159 , c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Гормоны

Гормоны групп

Механизм действия

Механизм действия гормонов II группы (пептидных гормонов)



© 2024 chem21.info Реклама на сайте