Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возмущение скорость затухания

    Вещественная часть числа s определяет скорость роста (или скорость затухания) малых возмущений. Если > О, то возмущение будет расти со временем, если -<0 — затухать. Величина может рассматриваться как некоторая характеристика роста возмущений. Определим характерный масштаб роста возмущений Лх при помощи соотношения  [c.82]


    Графический расчет позволяет оценить скорость затухания конечных возмущений в системе деривация — уравнительный резервуар — турбинный трубопровод — турбина с регулятором. Такие построения целесообразно производить в тех случаях, когда площадь резервуара близка к критической по (10-88). Основная особенность расчетов на резонанс колебаний заключается в том, что при этом расход, потребляемый турбиной после сброса или наброса некоторой части мощности, не остается постоянным. Постоянной сохраняется Мощность агрегата ТУ  [c.440]

    Входящие в соотношение (10.42) величины б и е называют соответственно коэффициентом затухания и коэффициентом фазы. Коэффициент затухания характеризует уменьшение по длине линии амплитуды давления или амплитуды скорости среды в волне возмущения, распространяющегося по линии с фазовой скоростью  [c.268]

    Если гидравлическое сопротивление трения линии считать квазистационарным, то следует положить ИрР = Ка = 1. Вычисленные при таком допущении коэффициенты затухания и фазы обозначим соответственно б с и е д. Отношения б/бкс и / кс дают представление о том, как влияет нестационарность распределения местных скоростей движения среды на составляющие коэс )фициента распространения возмущений в линии. На рис. 10.4 приведены графики изменения величин / кс и в зависимости от безразмерной частоты а. Из графиков видно, что использование квази- [c.270]

    Присутствие частиц в жидкости вносит возмущение в поле скоростей жидкости, которое она имела бы в отсутствие частиц. Известно [31], что при стоксовом поступательном движении изолированной твердой сферы в неограниченном объеме вязкой жидкости гидродинамическое возмущение поля скоростей затухает с увеличением г как 1/г. Это достаточно медленное затухание, которое приводит к математическим осложнениям при определении возмущений, вызываемых наличием в жидкости большого количества частиц. В частности, это приводит к медленно сходящимся, а иногда и к расходящимся рядам и интегралам. [c.178]

    Другой прием обеспечения невозмущенного характера поджигания заключается в использовании манометрической бомбы воспламенение заряда при низком давлении, вдали от предела устойчивого горения, при достаточно малой скорости нарастания давления в бомбе позволяет добиться затухания внешних возмущений, связанных с поджиганием ВВ, к моменту достижения исследуемого диапазона давлений. [c.226]

    Околокритическая переходная область горения. В начале этой области при малых давлениях при осторожном поджигании (через промежуточный слой жидкости) здесь возможно получить метастабильные нормальные значения скорости горения, удовлетворяющие зависимости для области нормального горения. В некоторых случаях удавалось зафиксировать затухание начального возмущения на пути в 5—10 мм и переход на нормальную скорость горения. Картина горения при этом будет обычной и устойчивой, и только специальные методы (следовый) позволяют обнаружить особенности горения. Однако интенсивное поджигание (например, непосредственно от электроспирали) инициирует возмущенное горение жидкости. Как правило, но не всегда возникают пульсации пламени, средняя скорость горения возрастает максимально в 2—4 раза. Наблюдения с торца через слой жидкости [178] доказывают существование различных мод колебаний поверхности. [c.227]


    В данных опытах достигнуто pjp f 1,85. Дальнейшее загущение системы будет способствовать увеличению этого отношения (при равных скоростях роста давления), но одновременно будет расти время затухания начальных возмущений, что может помешать достижению высоких значений pjp . Используя известные методы поджигания без существенных возмущений, кривую Рк/Р = / г) можно продолжить в область высоких скоростей нарастания давления. [c.256]

    Устойчивость течения обычно определяют, изучая поведение вносимых в поток случайных возмущений. В случае затухания последних течение устойчиво, а при их росте — неустойчиво. Далее будут рассмотрены случайные возмущения специального вида — в виде волн, распространяющихся в положительном направлении оси X с постоянной и однородной фазовой скоростью. Таким образом, возмущенное течение будет волновым с амплитудой, которая может изменяться с продольной координатой или же одновременно вниз по потоку и с течением времени  [c.48]

    Так как малые возмущения температуры и толщины слоя жидкости не затухают (Gq > 0), то процессы молекулярной теплопроводности и испарения, описываемые решениями (1.7.6), (1.7.8) оказываются неустойчивыми. Характерно, что скорость нарастания температурных возмущений при развитии тепловой неустойчивости гораздо меньше, чем скорость их затухания за счет диссипативного процесса теплопроводности q < I [c.41]

    Таким образом, существуют три стадии при движении капелек, увлекаемых ветром. Первая стадия — короткий период движения с большой скоростью в сторону обрабатываемых растений. Вторая стадия наступает в том случае, если капельки не успели достичь растений быстрое падение переходит в медленное и на него накладывается поперечное движение и, может быть, движение вверх, обусловленное совместным действием ветра и присоединенных вихрей с концов крыльев самолета. Третья, конечная стадия наступает после затухания возмущений, вызванных полетом самолета капли, оставшиеся взвешенными в воздухе, движутся турбулентно вместе с ветром и одновременно оседают вниз с присущей им скоростью оседания. [c.95]

    Если, как и ранее [2], принять, что время полного перемешивания жидкости каждой пластиной (в сечении пленки) и последующего затухания возникающих гидродинамических возмущений в пленке весьма мало по сравнению с временем последовательного прихода двух пластин te = 2n N a, т. е. считать, что за время te скорость массоотдачи лимитируется в основном молекулярной диффузией, можно получить выражение  [c.12]

    Коэффициент затухания С ограничивают по величине, поскольку для регулятора скорости с обратной связью не наблюдается очень длительного переходного режима при скачкообразном возмущении по моменту от нагрузки. Практически для большинства конструкций регуляторов угловой скорости коэффициент затухания лежит в интервале 0,5<С<1,5. Коэ(Й)ициент усиления КрК .д,/Кур,< допустимый для замкнутой системы регулирования [c.159]

    Если в потоке по какой-либо причине режим нарушается, появляются возмущения, поле скоростей изменяется, то силы трения стремятся это нарушение погасить. При этом часть работы сил трения изменяет энтальпию (происходит диссипация энергии), другая часть работы расходуется на перестройку поля скоростей, возвращение к первоначальному их распределению по сечению потока. Это приводит к затуханию возмущений в потоке, к его стабилизации. [c.73]

    Использование такого соотношения приводит к интегро-диф-ференциальным уравнениям переноса теплоты, частным случаем которых является гиперболическое уравнение теплопроводности. Специфической особенностью этих уравнений является учет релаксационных свойств материалов. Такие обобщения уравнений теплопроводности имеют сравнительно ограниченную область применения, так как скорость распространения тепловых возмущений в твердых телах соизмерима со скоростью звука и соответственно времена релаксации очень малы. Быстрое затухание релаксационных функций при высоких и умеренных температурах приводит к тому, что решения интегро-дифференциальных уравнений переноса теплоты мало отличаются от решений классического линейного уравнения теплопроводности. [c.8]

    Опыт показывает, что такие характеристики турбулентности, как профили компонент пульсаций скорости, кинетической энергии турбулентности, се диссипации и т.п. автомодельны на некотором расстоянии вниз по потоку лишь в пристенной части пограничного слоя. Во внешней области их изменение по продольной координате достаточно заметно в довольно широком диапазоне чисел Яе. Важное свойство неравновесных течений состоит в том, что протяженности участков, на которых происходит затухание возмущений конкретного параметра, для различных характеристик турбулентности различны. Например, наиболее протяженным является участок релаксации толщины пограничного слоя, тогда как релаксации касательного напряжения на стенке, интегральных толщин пограничного слоя происходят более быстро. [c.260]


    Характерными примерами возмущающих воздействий второго типа являются турбулизация внешнего потока, обтекающего достаточно протяженную поверхность, монотонное изменение по ее длине скорости, наличие на всей поверхности равномерной шероховатости и т.п. В этих случаях затухание внешнего возмущения происходит в поперечном сечении пограничного слоя, тогда как перенос возмущений в направлении продольной координаты в подавляющем большинстве случаев является незначительным. Типичным примером проявления релаксационных эффектов при воздействии отмеченных возмущающих воздействий может служить развитие пограничного слоя при повышенной турбулизации внешнего потока. Этот случай безотносительно к течению в углах подробно рассмотрен в [23 ]. Что касается ситуаций, когда имеют место возмущающие воздействия обоих типов, то, не останавливаясь на деталях, отметим один принципиальный момент. Дело в том, что использование релаксационной модели Хинце — Лойцянского здесь является предпочтительным, поскольку лишь такой подход позволяет учитывать зависимость характеристик пристенной турбулентности как от продольной, так и от поперечной релаксации возмущений. [c.260]

    Таким образом, во всех этих опытах турбулентные возмущения вносятся в поток на решетке и затем затухают по мере продвижения по потоку. При этом пульсации скорости уже на небольших расстояниях от решеток становятся близкими к изотропным. На рис. 10.2 изображены результаты измерения отношения средних квадратов пульсаций продольной и поперечной компонент скорости [162]. Как видно, эти отношения близки к единице. Ясно, что если принять за время величину 1 — х1и (V — средняя скорость подводимого к решетке потока, х — координата, отсчитываемая вдоль канала от решетки), то картина затухания турбулентности по мере продвижения вдоль канала достаточно хорошо соответ- [c.171]

    Синусоидальная э.д.с. приложена к одному концу электрической линии с распределенным сопротивлением, емкостью и самоиндукцией. Показать, что скорость распространения возмущения обратно пропорциональна, а постоянная затухания прямо пропорциональна квадратному корню из емкости на единицу длины. [c.125]

    Соотношения (2.181), (2.182) показывают, что первые и последние возмущения, распространяющиеся со скоростями С1 и с , при выполнении условия устойчивости (2.180) быстро затухают и становятся пренебрежимо малыми на расстояниях С1Х Чос Те и СгХ Чо Те- Так как Х,р 1/7 е, то характерные расстояния затухания возмущений не зависят от частоты возмущающего сигнала, а определяются только размером частиц, физическими свойствами фаз и объемной концентрацией дисперсной фазы. При эти возмущения становятся пренебрежимо малыми для всех й >0 в соответствии с упрощенным уравнением описания. Поскольку сигналы, переносимые волнами второго порядка, быстро затухают, основное возмущение переносится кинематической волной. В процессе перемещения основное возмущение диффундирует за счет членов второго порядка в соответствии с уравнением (2.183), что приводит к размьшанию волновых фронтов. Характер распространения [c.143]

    Проведенный анализ устойчивости такой системы позволил получить дисперсио-ное уравнение, связывающее скорость нарастания (затухания) бесконечно малых возмущений с основными физико-химическими параметрами задачи. Из условия равенства нулю скорости нарастания возмущений выведено уравнение нейтральной устойчивости, связывающее основной безразмерный параметр, определяющий условие потери устойчивости системой в процессе ее эволюции (число Марангони), с волновым числом возмуи(ения. С помощью этой зависимости найдены минимальное значение числа Марангони и соответствующее ему значение волнового числа, при которых возможно возникновение неустойчивости Проанализированы условия потери системой устойчивости в зависимости от величины константы скорости химической реакции, вязкости жидкости, коэффициента диффузии и т.д. [c.30]

    Предложенная модель, связывающая движение заряженных частиц с движением основной массы фильтрующейся жидкости (п. 2.4), позволяет объяснить высокую чувствительность нефтяного пласта к вибровоздействию низкими частотами, которые из-за высокого коэффициента затухания не проникают глубоко в пласт. В рамках предложенной модели такой факт получает естественное объяснение под действием вибрации в колебательное движение приводятся заряды в призабойной зоне, однако смещение этих зарядов вызывает изменение электрических полей со скоростью света без затухания и в отдаленных областях, что в целом служит возмущением для движения всей системы зарядов в пласте и вызывает изменения в дебитах скважин. [c.35]

    Из этого результата следует, что фазовая скорость возмущения равна а = й/ц/(а os ф) и что возмущевие затухает с ростом X, причем характерная длина затухания равна [c.130]

    Ломаные очертания топочной камеры, понятно, не являются единственным доступным средством усиления смесеобразования в ее объеме. Значительно более эффекти вны>ми, в случае надобности, могут оказаться аэродинамические средства в виде подачи части вторичного воздуха скоростными струями с боков камеры. В гл. 7 уже отмечалось, что смесеобразовательные процессы значительно ускоряются центрами местного возмущения потока. Таким первичным органом возмущения служит прежде всего сама горелка, Однако зона возмущения постепенно затухает по мере удаления потока от источника этого возмущения, а вместе с тем — замедляется и процесс выгорания топлива, причем зона горения начинает сильно вытягиваться вперед. Размещение добавочных центров возмущения в самом топочном пространстве в виде системы небольших плохо обтекаемых тел нецелесообразно из-за тяжелых температурных условий их существования. Энергичное вдувание вторичного воздуха в виде острых струй с большими начальными скоростями, обеспечивающими им достаточную дальнобойность при данных мощности и толщине основного потока газов, может организовать энергичное возмущение потока в той части камеры, в которой процесс смесеобразования проявляет склонность к затуханию. Смесеобразовательный процесс энершчно идет только в том случае, если по сечению потока возникают слои с резко различными поступательными скоростями. Постепенно скорости эти выравниваются, даже если средняя общая скорость потока велика, и процесс [c.140]

    Детальное изучение переходной области показало [38, 197], что переход с прямой и (р) для нормального горения на прямую развитого турбулентного горения происходит по сложной кривой. Как правило, здесь велик разброс экспериментальных данных. Для нитрогликоля, нитроглицерина, дины скорости в этой области больше, чем это соответствовало бы прямой турбулентного горения для дигликольдинитрата, нитрометана, этилнитрата в узких трубках (4—5 мм) она оказывается несколько ниже. Среди смесей на основе азотной кислоты встречаются оба вида переходной зависимости. Согласно Андрееву [38], эти особенности, по-видимому, связаны с двойственным влиянием турбулизации на горение разрушая прогретый слой, она затрудняет горение и может даже привести к его затуханию. С другой стороны, увеличивая поверхность контакта между газообразными продуктами горения и жидкостью, турбулизация может ускорять горение. Это приводит к появлению весьма интересных эффектов. Так, в экспериментах Андреева и Беспалова [199] было обнаружено значительное (2—3 раза) увеличение критического диаметра горения кг желатинированного нитроглицерина (3,2—5%) при переходе на возмущенный режим горения. Чем больше вязкость желатины, тем [c.233]

    Перейдем к участку зависимости Рк г) при повышенных скоростях роста давления. Эксперимент показывает, что при г 3,1/сек соблюдается условие/)к < Р - Киносъемка позволила установить, что в данных опытах начальное возмущение, созданное воспламенителем (черный порох), не успевало затухнуть и турбулентное горение развивалось на негладкой поверхности как дальнейшее углубление неровностей рельефа. В опытах с малыми скоростями роста давления начальные возмущения поверхности затухали, всегда имелся участок горения с гладкой поверхностью. На рис. 118, 6 построена зависимость времени горения смеси до момента достижения Сопоставление рис. 118, а и 118, б позволяет установить, что характерное время затухания возмущений поверхности исследовавшейся системы составляет около 2 сек. Если скорость нарастания давления была столь велика, что возмущения не затухали р оказывалось меньше Рф. При развитии неустойчивости из нормального горения Рк> [c.256]

    ЭТИХ сигналов, природа их во всех случаях одинакова и состоит в изменении электрического потенциала на плазматической мембране нейрона. Передача сигналов основана на том, что электрическое возмущение, возникшее в одном участке клетки, распространяется на другие участки. Если нет дополнительного усиления, эти возмущения затухают по мере удаления от их источникоа На коротких расстояниях затухание незначительно, и многие нейроны проводят сигналы пассивно, без усиления. Однако для дальней связи такого пассивного распространения сигнала недостаточно. Поэтому у нейронов с длинными отростками в ходе эволюции выработался активный сигнальный механизм, представляющий собой одно из самых удивительных и характерных свойств нейрона. Электрический стимул, сила которого превышает определенную пороговую величину, вызывает взрыв электрической активности, распространяющийся с большой скоростью вдоль плазматической мембраны нейрона. Эту бе17щую волну возбуждения называют потенциалом действия или нервным импульсом. Потенциал действия передает информацию с одного конца нейрона на другой без затухания со скоростью до 1(Ю м/с, а в некоторых нейронах еще быстрее. [c.73]

    Такие решения упрощенных уравнений Навье-Стокса или уравнений Рейнольдса, Громеки и других являются в действительности лишь частными решениями общих уравнений Навье-Стокса (33) гл. I. При определенных условиях эти решения устойчивы и выражаемые ими течения смазки действительно наблюдаются на практике. Однако при других условиях ламинарное течение жидкости или газа становится неустойчивым и заменяется более сложными формами течения в виде упорядоченных вихревых или беспорядочных вихревых, турбулентных течений. Теоретический расчет таких течений очень сложен. Несколько проще выполняется анализ тех условий, при которых ламинарное течение теряет устойчивость. Тогда можно рассматривать малые возмущения основного движения и развитие или затухание этих возмущений со временем или с перемещением потока жидкости. При этом уравнения Навье-Стокса (33) гл. I можно линеаризовать по выражениям скорости возмущенных течений, пока эти скорости много меньше скоростей основного ламинарного течения. [c.73]

    Уравнения (99), (100) и другие аналогичные им уравнения называются уравнениями Орра — Зоммерфельда. Если решить такое уравнение, то по зависимости функции ф от времени можно судить о затухании или возрастании возмушений скорости основного потока Игь о, и тем самым о его устойчивости или неустойчивости. Однако решить уравнение Орра — Зоммерфельда очень трудно ввиду зависимости величины от г в уравнении (100) или от г, т и 8- в уравнении (99). При различных попытках приближенного решения уравнения (100) найденное таким путем критическое значение числа Рейнольдса оказывалось далеким от наблюдаемых его значений или же обнаруживалась полная устойчивость потока Пуазейля по отношению к малым возмущениям. Предполагается, что наблюдаемая при больших числах- Рейнольдса неустойчивость потоков Пуазейля и Куэтта вызывается нелинейными, не бесконечно малыми возмущениями. При их учете в уравнение Орра — Зоммерфельда добавляются нелинейные члены порядка что не сказывается на числе определяющих критериев, но значительно усложняет это уравнение. [c.76]

    В соответствии с данными работы [139] рассматривалось обтекание плоской пластины при скорости набегающего потока Uoo = = 9,18 м/с. Координата х соответствовала расстоянию до передней кромки пластины. Поскольку в [139] источник возмущений был локализован при х = 250 мм, в расчетах анализировалась область Рассматривались частоты возмущений Д = 55, /г = 81,4, /з = 120 Гц, что соответствовало безразмерным частотным параметрам F, = 63,6 10- F, = 94,1 10- F, = 138,7 10 Число Прандтля Рг = 0,72, число Маха М = 0,02. На рис. 6.10 приведены зависимости ( у) (измеряемые в мм- ) для частоты 55 Гц при различных значениях х. Привлекая соображения симметрии, получим, что в данном течении при =0 имеются две седловые точки, описывающие гребень пакета. Седловые точки в области затухания располагаются в окрестности концов кривых (см. рис. 6.10), в области роста возмущения оедловые точки находятся нри Y = О-Следовательно, плоские волны ( У = 0) затухают быстрее пространственных, в то время как в области нарастания плоские волны растут быстрее пространственных. Поэтому в области затухания ог>0) в спектре пакета будут доминировать пространственные волны, а в области роста ( j < 0), наоборот, будут преобладать плоские волны. Это соответствует данным работы [139]. [c.130]

Рис. VIII.9. Номограмма для определения скорости Хо затухания возмущений. Рис. VIII.9. Номограмма для <a href="/info/9272">определения скорости</a> Хо затухания возмущений.

Смотреть страницы где упоминается термин Возмущение скорость затухания: [c.352]    [c.275]    [c.125]    [c.125]    [c.118]    [c.352]    [c.178]    [c.162]    [c.213]    [c.252]    [c.290]    [c.270]    [c.339]   
Инженерная химия гетерогенного катализа (1971) -- [ c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Возмущения

Затухание

Затухания скорость



© 2025 chem21.info Реклама на сайте