Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дублеты спектральные

    Метод основан на фотометрировании дублета спектральных линий натрия 589,6 и 589,0 нм (3 5i/2—з/2 а = 2,1 эВ), излучаемых его атомами в пламени светильный газ — воздух. Факторы специфичности при определении натрия в присутствии калия, лития и кальция составляют соответственно л-10 , л-10 и /г-10 Предел обнаружения натрия Ы0 %- Метод ограничи- [c.41]


    Дуговой спектр гелия состоит из небольшого числа линий, расположенных в спектральной области между 10800 и 2700 Айв спектральной области между 584 и 508 A (крайний ультрафиолет). Рунге и Пашен разбили спектральные линии гелия на две независимые серии и на основании этого высказали предположение, что для гелия характерны два состояния парагелий, которому принадлежат одиночные линии, и ортогелий, которому принадлежат дублеты (двойные линии). [c.635]

    Переход между основным термом атома натрия 3 5i/2 и этими компонентами приводит к появлению в спектре двух линии (дублета) 3 3,/2—З Рз/2 (Х = 589,0 нм), 3 5,/2—З Р,/2 ( == ==589,6 нм). Для атомов, имеющих два валентных электрона (например, атома кальция) характерно существование синглет-ных и триплетных термов, поскольку спины двух электронов могут либо складываться (5=1, М = 3), либо вычитаться (5 = 0, М=1). Переход между синглетным термом 4 Pl и основным термом 4 5о отвечает спектральной линии с длиной волны 422,7 нм. [c.9]

    Метод основан на последовательном фотометрировании дублетов спектральных линий калия 4 51/2—4 P°i/2, 3/2 769,9, 766,5 нм ( а = 1,62 эВ) и лития 2 Si/2—22Р 1/2,3/2 670,8 нм ( в = 1,85 эВ) , излучаемых атомами калия и лития а пламени светильный газ — воздух. Факторы специфичности интерференционных светофильтров при определении калия в присутствии лития, натрия и кальция составляют 10 , а лития в присутствии калия и натрия— 10 —10 что обусловливает хорошую избирательность анализа смеси калия и лития методом фотометрии пламени. Предел обнаружения калия и лития — 5-10 %. [c.45]

    В спектре излучения цезия получен дублет спектральных линий с длинами волн X и почернениями в. [c.58]

    Для построения дисперсионной кривой стилометра в разряд конденсированной искры вводят раствор, содержащий соль известного элемента. В наблюдаемом спектре измеряют положение спектральных линий с точностью до десятых долей деления шкалы барабана. Затем вводят в разряд дистиллированную воду и измеряют положение спектральных линий в ее спектре (холостая проба). Идентифицируют спектральные линии в спектре известного элемента, используя при этом данные табл. 1 и исключив предварительно спектральные линии, наблюдаемые в спектре холостой пробы. Идентификация облегчается группировкой спектральных линий (синглет, дублет, триплет и т. п.), их относительной яркостью, цветом. Показания измерительного барабана и длины волн идентифицированных спектральных линий записывают в виде таблицы. [c.16]


    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4 51/2—4 Р°1/2.3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий ( в) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1—2 мкг//мл. Присутствие [c.40]

    Для измерений абсорбции используют резонансный дублет алюминия 309,3 нм. При этом спектральная ширина щелей должна быть не более 0,7 нм (для отделения измеряемой линии от соседней линии с длиной волны 308,2 нм). В указанных выще условиях может быть достигнут предел обнаружения алюминия, равный 2 пг. [c.167]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]

    Спектрофотометры с большой разрешающей силой показывают, что обычные спектральные линии, особенно в многоэлектронных атомах, расщепляются и состоят из двух (дублеты), трех (триплеты), а иногда из большего числа линий. Это явление получило название мультиплетности. Линии мультиплетов в свою очередь большей частью состоят из ряда очень близких линий, что весьма характерно для атомов элементов тяжелых металлов. [c.55]

    Бора на несколько подуровней, лежащих очень близко друг к другу. При этом было получено приемлемое совпадение с экспериментально найденной тонкой структурой спектра водорода. Было обнаружено, что под действием магнитного поля спектральные линии расщепляются еще больше. Этот эффект, известный под названием эффекта Зеемана, иллюстрируется рис. 1-13, где изображено расщепление основного натриевого дублета. Для объяснения наблюдаемого явления потребовалось введение третьего квантового числа т, названного магнитным квантовым числом. Для описания положения электрона в пространстве нужно три координаты. Это как раз проявляется в трех степенях свободы и требует трех квантовых чисел для описания энергии электрона. Без пространственной ориентации расположение орбитальной плоскости электрона полностью произвольно, а третья степень свободы является вырожденной. Однако при наличии внешнего поля орбитальная плоскость электрона прецессирует вокруг направления поля, и потому вырождение будет сниматься. Третье квантовое условие подобно моменту количества движения имеет вид [c.37]

    В известных опытах Штерна и Герлаха узкий пучок атомов водорода, проходящих через неоднородное магнитное поле, расщеплялся на два пучка. Атомы водорода в 5-состоянии не имеют механического и магнитного орбитальных моментов и наблюдаемое явление можно было объяснить только существованием у электрона собственного магнитного момента. Дальнейшие исследования обнаружили расщепление спектральных линий ряда атомов с одиночным электроном на дублеты, что свидетельствует о наличии в атоме двух близких энергетических уровней, на которых может находиться электрон. [c.73]

    В тонкой структуре спектров различают одиночные, двойные, тройные и т. д. спектральные линии, называемые соответственно синглеты, дублеты, триплеты и т. д. — мультиплеты. Мультиплетность связана с числом холостых электронов т равенством М = т)-1-1. Экспериментально определяя М, находят число неспаренных электронов т) в атоме. [c.56]

    В тонкой структуре спектров различают одиночные, двойные, тройные и т.д. спектральные линии, называемые соответственно синглетами, дублетами, триплетами и т.д. [c.43]


    Другим способом нарушения характера взаимодействия между молекулами в растворе является изменение его температуры. Рассмотрим, как изменится модель раствора, если его температуру несколько повысить. Очевидно, чем прочнее связь, возникаюш,ая между данными молекулами, тем дольше такие ассоциации не распадаются. Следовательно, преобладать должны, казалось бы, ассоциации типа (V). С другой стороны, концентрация в растворе атомов, обладающих заметным сродством к протону (атомов В), очень мала, а следовательно, мала и вероятность участия их в образовании комплексов. Поэтому более вероятно образование ассоциаций типа (IV). Таким образом, соотношение между ассоциациями типа (IV) и (V) оказывается обусловленным двумя конкурирующими факторами вероятностью образования ассоциации и временем ее существования. Повышение температуры раствора приведет к уменьшению последнего для комплекса (V), так как увеличивает вероятность его разрушения, и никак не повлияет на вероятность его образования (концентрация атомов остается неизменной). Следовательно, исходя из предложенной модели, повышение температуры должно всегда смещать равновесие в сторону асимметричных ассоциаций типа (IV). Спектрально это должно проявляться в уменьшении интенсивности более высокочастотной полосы интенсивного дублета и появления (или усиления) узкой полосы около 3700 см , характерной для ассоциаций (IV). [c.32]

    Поскольку групповое определение примесей проводят в средней УФ-области, то чаще всего используют резонансный дублет натрия 330, 23—330, 30 нм с изменением давления в разрядной трубке интенсивность линий натрия возрастает к краям тлеющего разряда. При увеличении разрядного тока интенсивность убывает [661]. При анализе соединений элементов со сложным спектром при силе тока выше оптимального значения наблюдается сильное возрастание фона [218]. Отмечалось влияние матрицы на интенсивность спектральных линий натрия [165]. [c.111]

    Применяя прецизионную методику вторичных рентгеновских спектров, И. А. Красников установил влияние водорода в металле на свойства спектральных линий спин-дублета Ка,-ссз для различных элементов, выражающееся в уменьшении дисперсии рентгеновского спектра. Это явление он объясняет присутствием протонов в глубоких уровнях электронных оболочек атомов, составляющих решетку металла. [c.76]

    Таким образом, теория Бора-Зоммельфельда и решение уравнения Шредингера приводят к появлению трех квантовых чисел в соответствии с тремя степенями свободы электрона. Однако появление дублетов спектральных линий в электрическом и магнитных полях навело американских физиков Дж. Уленбека и С. Гаудсмита в 1925 г. на мысль о том, что электрон имеет четвертую степень свободы — собственный магнитный момент, который не зависит от его орбитального момента. Позднее П. Дирак применил теорию относительности к квантовой механике и показал, что собственный угловой момент электрона, или его спиновый момент (spin — по английски вращение), можно обосновать и теоретически. Вначале предполагалось, что спиновый момент обусловлен вращением электрона вокруг собственной оси. Он в известном смысле аналогичен орбитальному угловому моменту [см. уравнение (29)]  [c.96]

    Однако в противоположность УФС естественная ширина линий обычных источников рентгеновских лучей РФС довольно значительна и играет большую роль в определении полуширины экспфиментально наблюдаемых спектральных линий [27]. В РФС обычно используют рентгеновский дублет 011 2, а это рентгеновское излучение образуется в том случае, когда электроны падают из оболочек Ьц и Ьщ (спин-орбитальное расщепление 2р-атомных уровней) в дырку оболочки К (1.5-атомный уровень). Естественная ширина линий, связанная либо с переходом Ь,1 -> К, либо с переходом Ьщ К, составляет 0,7 эВ для рентгеновского излучения А1 в этом случае дублеты перекрываются, приводя к эффективной ширине 1,0 эВ. Магниевое рентгеновское излучение Хо(1а2 состоит из дублета шириной 0,8 эВ. Источники рентгеновских лучей с большими энергиями (например, Сг, Си или Мо) характеризуются шириной дублетной компоненты, превьппающей 1,0 эВ. Таким образом, эффективный предел ширины линий РФС устанавливается естественной шириной источника рентгеновского излучения, несколько модифицированной естественной шириной, связанной с уровнем, с которого происходит фотоионизация. Некоторые вклады обусловлены также недостатками приборов. При изучении твердых веществ экспфиментально наблюдаемая полуширина спектральных линий РФС для пиков С15, N5 , Рзр, 82 и подобных им составляет 1,5 эВ. Эксперименты РФС с газообразными веществами дают значительно более узкие линии. Например, полуширина линии Ые для газообразного неона составляет 0,8 эВ [27]. Разница в полуширине линий для газообраз- [c.335]

Рис. Х.2. Типичные формы мессбауэровских спектров поглощения а) синглетная лорен-цевская линия с изомерным сдвигом б б) спектральный дублет (ннтропруссид натрия) в) сверхтонкое магнитное расщепление (а-ГвзОз) г) мессбауэровский спектр двухфазного образца. Рис. Х.2. Типичные формы <a href="/info/889616">мессбауэровских спектров</a> поглощения а) синглетная лорен-цевская линия с <a href="/info/972954">изомерным сдвигом</a> б б) спектральный дублет (ннтропруссид натрия) в) <a href="/info/1827192">сверхтонкое магнитное расщепление</a> (а-ГвзОз) г) <a href="/info/889616">мессбауэровский спектр</a> двухфазного образца.
    Помимо размеров кристаллитов и микронапряжений расширение линий на рентгенограммах вызывается дублет-ностью Kd -излучения и рядом факторов, завис51щих от условий съемки (например, при съемке на дифрактометре экспериментальная ширина линии зависит от размеров щели счетчика и Т.Д.). Для учета этого расширения (инструментальной ширины 3 ) применяют съемку со стандартом, для которого расширение линии обусловлено только условиями (Уьемки и спектральной шириной дублета Ко(. Достаточно точно вычислить истинную ширину линии по экспериментально найден- [c.230]

    От датчика сигнал поступает на регистрирующее устройство. Спектр исследуют как зависимость интенсивности поглощения от напряженности магнитного поля. Для изолированных ядер спектральная кривая представляет собой очень резкий пик полосы по-глош.ения. В твердом теле рассматриваемое ядро жестко закреплено в кристаллической решетке. Оно имеет собственный магнитный момент, что приводит к возникновению слабого локализованного магнитного поля Нь. Поэтому второе, соседнее ядро испытывает влияние поля Н Нь (знак зависит от ориентации первого ядра в магнитном поле). Вследствие этого твердое вещество, содержащее пары ядер, дает резонансный спектр в форме дублета. Его компоненты соответствуют двум эффективным полям Я+Ях,, действующим на каждое ядро при его взаимодействии с соседями. Треугольное расположение ядер дает спектр с тремя пиками, а тетраэдрическое — спектр с плоским пиком, так как ожидаемые четыре максимума обычно сливаются воедино. [c.187]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточная. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов. Она не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин воли линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов вращательного (веретенообразного)-движения, что обусловливает появление у них, кроме орбитального, еще спинового вращательного момента, а также спинового магнитного момента (спин — от английского to spin — вращаться). Ориентация спинового момента электрона в дйух противоположных [c.62]

    Широко применяют химико-спектральные методы после концентрирования микрокомпонента или отделения основы. Химические основы методов весьма разнообразны, равно как и способы отделения. Используют физические и химические методы концентрирования примесей, в том числе и натрия методы фракционной дистилляции [161, 517, 665], отделение основы осаждением [195] или экстракцией [492]. Более полные сведения о применении химико-спектрального анализа для определения натрия в числе других элементов приведены в обзорах [195, 196]. В большинстве случаев используют резонансный дублет 589,6—589,0 нм дублет 330,23—330,30 нм используют редко [130, 405, 493]. Метод применим к анализу органических веществ после постепенного упаривания с угольным порошком [536], ароматических кремнийорганических соединений, диэтиламина и тетратиурамдисульфида после упаривания с сульфатом стронция (предел обнаружения натрия 3-10 %) [386]. Некоторые примеры применения химико-спектральных методов приведены в табл. 43. [c.104]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточна. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов, и не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин, волн линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов [c.76]

    Спектры атомов щелочных металлов, имеющих один электрон на внеш. электронной оболочке, схожи со спектром Н, но смещены в область меньших частот число спектральных линий в них увеличивается, а закономерности в расположении линий усложняются. Пример-спектр Na, атом к-рого имеет электронную конфигурацию ls 2s 2p 3s с легковозбуждаемым внеш. электроном 3s. Переходу этого электрона из состояния Зр в состояние 3a соответствует желтая линия Na (дублет X = 589,0 им и X = 589,6 нм) это-наиб. яркая линия, с к-рой начинается т. наз. главная серия Na. Линии этой серии в спектре испускания соответствуют переходам из состояний Зр, 4р, 5р,. .. в состояние 3s. [c.219]

    Для атомов послед, групп элементов в периодич. системе, обладающих двумя или неск. внеш. электронами, спектры еще более усложняются, что обусловлено взаимод. электроноа Особенно сложны спектры атомов с заполняющимися d- и /-оболочками число линий в таких спектрах достигает мн. тысяч, простых закономерностей в них не обнаруживается. Однако и для сложных спектров можно произвести систематику оптич. квантовых переходов и определить схему уровней энергии. Систематика спектров атомов с двумя и более внеш электронами основана на приближенной характеристике отдельных электронов при помощи квантовых чисел и и / с учетом взаимод. этих электронов друг с другом. При этом приходится учитывать как их электростатич. взаимод, так и спин-орбитальное, что приводит к расщеплению уровней энергии (т.наз. тонкая структура). В результате этого взаимод. у большинства атомов каждая спектральная линия представляет собой более или менее тесную группу линий-мультиплет. Так, у всех щелочных металлов наблюдаются двойные линии (дублеты), причем расстояния между линиями увеличиваются с увеличением порядкового номера элемента. Для щел.-зем. элементов наблюдаются одиночные линии (син-глеты) и тройные (триплеты). В спектрах атомов послед, групп периодич. системы элементов наблюдаются еще более сложные мультиплеты, причем атомам с нечетным числом электронов соответствуют четные мультиплеты (дублеты, квартеты), а с четным числом-нечетные (триплеты, квинтеты). Кроме тонкой структуры в A. . наблюдается также сверхтонкая структура линий (примерно в 1СЮ0 раз уже, чем мультиплетная), обусловленная взаи- [c.219]

    В заданной полосе линии появляются в виде небольших правильно рас-нолонченных групп (дублеты, триплеты и т. д.). Все полосы в полной спектральной системе содержат одинаковое число серий. [c.361]

    Применение мёссбауэровской спектроскопии для изучения поверхности можно проиллюстрировать на примере исследования дисперсных катализаторов Pt—Fe, нанесенных на графитированный углерод [127]. Наблюдаемые спектральные линии разлагали на компоненты с помощью ЭВМ. Снятые при комнатной температуре спектры образцов, полученных восстановлением водородом при 770 К, обычно характеризовались кривыми, которым лучше всего удовлетворяли два квадрупольно расщепленных дублета (рис. 11). Внешний, менее интенсивный дублет с широкими линиями приписан поверхностным атомам, а внутренний дублет с узкими линиями — атомам объемной фазы. Долю поверхностных атомов железа можно оценить по площадям, ограниченным соответствующими линиями, при условии что вероятность испускания без отдачи для атома поверхности и атома объемной фазы одинаковы. В общем случае это не должно выполняться, потому что поверхностные атомы связаны в кристаллите менее прочно. Авторы [127] обошли эту трудность, измеряя зависимость спектральных данных от величины адсорбции газов и используя предположение, что поверхностный атом железа, на котором адсорбирован водород или 28  [c.435]

    В этой области, будет соответствовать более широкая спектральная полоса, чем ширина линии поглощения атомов, окружающих дугу. В этих условиях центральная часть полосы излучения, испускаемого атомами в дуге, поглощается теми атомами, которые окружают дугу. Этот экстремальный пример самопоглощения, называемый самообращением, может усложнить качественный анализ. Самообращенная линия, такая как показана на рис. 20-20, состоит как бы из двух отдельных линий по каждой стороне от истинного положения эмиссионной линии (сравните эту самообращенную линию с дублетом линий натрия при 589 нм на рис. 19-5). [c.711]

    На рис. 19 (стр. 62—63) представлена серия наиболее типичных рентгенограмм, полученных во втором порядке отражения Л ах.г-дублета меди от пластинки кварца толш,и-ной 0,15 мм после последовательных поворотов трубки спектрографа вокруг своей оси в интервале углов от 19 до 25°. Видно, что с уменьшением угла поворота трубки от 25 до 23° происходит постепенный рост интенсивности спектральных линий и скачкообразное качественное изменение их структуры. Линии, полностью лишенные каких-либо признаков раздвоения при 19 и 20°, обнаруживают типичную дублетную структуру при съемке под углами, лежащими между 22 и 25°. Аналогичные изменения структуры наблюдаются для /Ог-линии спектра. [c.61]

    В рассматриваемой серии опытов изучалась структура /Сах,2-дублета меди после отражения лучей от плоскости (ЮТО) кварца, при расстояниях кристалл — пленка от 900 до 1000 мм. Одновременно с изменением расстояния кристалл — пленка изменялся угол поворота кристалла по отношению к пучку падающих на него лучей в интервале от 7 до 17°. Рассмотрение полученных рентгенограмм позволяет заключить, что рассматриваемый тип расщепления спектральных линий представляет собой лишь частный случай общего явления мультиплетности спектральных линий, проявляющегося в виде краевого в тех случаях, когда отдельные близко расположенные рефлексы рентгенограммы, обязанные отражению от разных блоков нзогну- [c.64]


Смотреть страницы где упоминается термин Дублеты спектральные: [c.40]    [c.40]    [c.110]    [c.193]    [c.341]    [c.38]    [c.46]    [c.125]    [c.330]    [c.151]    [c.24]    [c.196]    [c.59]    [c.293]   
Оптические спектры атомов (1963) -- [ c.48 , c.57 , c.59 , c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Дублет

Ширина спектральных дублетов



© 2025 chem21.info Реклама на сайте