Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система коагуляции фактор

    Рассмотренные в предыдущих разделах факторы и закономерности устойчивости и коагуляции в дисперсных системах относи  [c.342]

    Константа скорости коагуляции К (константа скорости медленной коагуляции) является мерой кинетической агрегативной устойчивости. Если А = 0 и Р = 1, то эта константа равна константе скорости быстрой коагуляции, зависящей от вязкости среды и температуры системы. Если ДЯ =7 = О и Р =7 1, то не все соударения частиц эффективны, и происходит медленная коагуляция. Замедление коагуляции, обусловленное потенциальным барьером, характеризуется фактором устойчивости, или коэффициентом стабильности  [c.160]


    Добавляемые к нефти газоконденсаты, содержащие значительное количество ароматических углеводородов, обладают достаточно хорошей растворяющей способностью по отношению к компонентам агрегативных комбинаций неф ти. При добавлении первых порций (до 10% мае.) газового конденсата происходит некоторая деформация периферийных слоев агрегативных комбинаций и повышение их сродства за счет внедрения в них газового конденсата. Это может способствовать частичной коагуляции агрегативных комбинаций с повышением их размеров. Фактор устойчивости, впрочем, понижается очень незначительно (1,00-0,99). После внедрения в периферийный слой добавляемый газовый конденсат продолжает действовать как растворитель, начиная взаимодействовать непосредственно с компонентами ядра агрегативных комбинаций, приводя к понижению их размеров, то есть к диспергированию системы. Следствием этого является повышение устойчивости системы. Добавление следующих порций газового конденсата способствует дальнейшему растворению агрегативных комбинаций и образованию в системе новых взаимодействующих структур, которые укрупняются, способствуя изменению фактора устойчивости системы. Следует отметить, что конфигурации образованных новых структур существенно отличаются от существующих в начальный момент в исходной смеси. [c.80]

    Ускорение коагуляции, вызванное тем или иным воз--действием на систему, приводит к изменениям ее свойств (оптической плотности, окраски, вязкости и т. д.) или даже к разделению фаз. В агрегативно неустойчивых системах скорость коагуляции определяется частотой межчастичных столкновений и не зависит от интенсивности фактора, вызвавшего коагуляцию. [c.135]

    Коагуляция коллоидных систем может происходить под влиянием ряда факторов — старения системы, изменения концентрации дисперсной фазы, изменения температуры, механических воздействий, света и т. д. Однако наиболее важное теоретическое и практическое значение имеет коагуляция при добавлении электролитов. В нашем курсе мы подробно остановимся только на коагуляции электролитами и лишь вкратце коснемся других причин коагуляции. [c.286]

    Коагуляция под влиянием электролитов является наиболее типичным случаем коагуляции и обычно применяется в технике, когда необходимо разрушить коллоидную систему. Однако очень часто коагуляция обусловливается и другими, чисто физическими факторами — механическим воздействием на коллоидную систему, нагреванием или замораживанием золя, разбавлением или концентрированием. Коагуляция может также происходить под влиянием видимого и ультрафиолетового света, рентгеновских лучей, радиоактивного излучения, при действии электрического разряда и ультразвука. Наконец, разрушение системы может наступить спонтанно при длительном хранении коллоидной системы. К сожалению, особенности и механизм безэлектролитной коагуляции до настоящего времени изучены недостаточно. Между тем для понимания явления коагуляции во всех его аспектах, для составления верного представления о его существе подобные исследования могли бы дать очень много. Несомненно, что правильный взгляд на явление может быть установлен лишь при всестороннем его изучении, при подходе к нему с самых различных точек зрения. [c.308]


    Фактором, вызывающим коагуляцию, может быть любой агент, нарушающий агрегативную устойчивость системы, например изменение температуры (сильное нагревание или охлаждение вплоть до замораживания), механическое воздействие (интенсивное встряхивание, перемешивание, перекачивание по трубам), действие света и различного рода излучений, действие электрических разрядов. Однако наиболее важным фактором является действие электролитов. Электролиты, добавляемые к золям, чрезвычайно быстро и резко влияют на толщину ДЭС и на -потенциал, являющийся одним из главных факторов устойчивости гидрофобных коллоидных систем. [c.430]

    Кинетика медленной коагуляции развита в работах Н. А. Фукса. Для медленной коагуляции характерны условия, когда и не все соударения частиц являются эффективными (стерический фактор рф ). Фуксом показано, что если А Уб много больше кТ, то скорость коагуляции близка к нулю и система может быть агрегативно устойчивой. Теория кинетики медленной коагуляции является более обшей, в то время как быстрая коагуляция отвечает частному случаю при условиях Аиг, 0 и р -.  [c.432]

    Как влияет способ получения коллоидной системы на строение мицеллы От каких факторов зависит заряд гранулы Каково поведение коллоидной системы в постоянном электрическом поле (электрофорез) Как осуществить коагуляцию и пепти-зацию  [c.61]

    Односторонность подхода Оствальда к характеристике коллоидов показал Н. П. Песков (1918). По Пескову, взгляд на коллоиды, как на системы, свойства которых являются функцией только размера частиц, недостаточен для полного описания коллоидных систем. Это может быть сделано лишь с учетом факторов, определяющих способность коллоидной системы сохранять неизменными размеры частиц. Изменение размеров частиц происходит при их слипании — коагуляции. Способность противостоять коагуляции была названа агрегативной устойчивостью. [c.6]

    Когда между частичками дисперсной фазы и дисперсионной средой нет значительного взаимодействия (система лиофобна), сближение частичек происходит подобно сближению в вакууме. Расклинивающее давление равно нулю до расстояний Ю"" см, затем оно становится отрицательной величиной, т. е. фактором коагуляции. Чем выше лио-фильность системы, тем выше положительное расклинивающее давление или толщина сольватных оболочек, уравновешивающих своим расклинивающим давлением постоянную внешнюю силу, стремящуюся сблизить частички, и тем выше устойчивость системы. Поэтому стабилизация лиофобных дисперсных систем основана на лиофилизации поверхности частичек дисперсной фазы. Такая лиофилизация осуществляется либо созданием адсорбционного слоя ориентированных молекул поверхностно-активного вещества, изменяющего природу поверхности дисперсных частичек, либо адсорбцией ионов и созданием двойного электрического слоя на поверхности раздела фаз. Двойной электрический слой ионов при достаточно малой концентрации электролита в дисперсионной среде всегда размыт и образует вокруг коллоидной частички гидратную оболочку значительной толщины. Эта оболочка проявляет положительное расклинивающее давление, обусловленное электростатическими силами. [c.89]

    Выше мы видели, что термодинамическая неустойчивость дисперсных и коллоидных систем выражается в самопроизвольном укрупнении частиц — коагуляции и коалесценции. Однако скорость коагуляции может быть различной. Если система обладает большим избытком свободной энергии на границе раздела фаз, т. е. и поверхностное. натяжение а и площадь S поверхности раздела фаз достаточно велики, то коагуляция идет с большой скоростью. Такие системы называют агрегативно неустойчивыми. Но иногда в колЛоиде с такой же степенью дисперсности коагуляция идет очень медленно, практически незаметно. В таких системах, называемых агрегативно устойчивыми, очевидно, поверхностное натяжение на границе фаз невелико. Отсюда можно сделать вывод о том, что важный фактор получения устойчивых коллоидных систем — уменьшение поверхностной энергии за счет адсорбции поверхностноактивных веществ на коллоидных частицах. [c.55]

    На скорость быстрой коагуляции в условиях монодисперсности коллоидной системы влияют три основных фактора интенсивность броуновского движения (его мерой является коэффициент диффузии О), радиус р сферы притяжения частиц (то расстояние, на которое должны приблизиться центры двух частиц, чтобы произошло их слияние) и, наконец, начальная концентрация По частиц в системе. Чем больше о. тем больше ве-роятность ш эффективных столкновений частиц. При быстрой коагуляции ш=1, при медленной и)<1. Если коагуляции нет, г1У = 0. [c.124]

    Рассматривая свойства аэрозолей, прежде всего необходимо отметить, что они обладают значительно меньшей агрегативной устойчивостью, чем коллоидные и дисперсные системы с жидкой дисперсионной средой. Как мы видели выше, агрегативная устойчивость дисперсных систем с жидкой дисперсионной средой обусловлена существованием либо двойного электрического слоя, либо сольватной оболочки, либо, наконец, прочной пленки на поверхности частиц. В системах с газообразной дисперсионной средой всякое взаимодействие между поверхностью частиц и средой отсутствует. Правда, ионы, обычно присутствующие в небольшом количестве в газообразной среде, способны адсорбироваться на поверхности частиц и придавать им электрический заряд, однако возникающий заряд невелик и фактором устойчивости служить не может. Поэтому аэрозоли агрегативно неустойчивы, и в них всегда идет самопроизвольная коагуляция, скорость которой зависит от начальной концентрации аэрозоля и подчиняется уравнению Смолуховского для кинетики быстрой коагуляции (см. гл. VI). [c.149]


    Следует отметить, однако, что и гели (коагуляционные структуры) постепенно упрочняются во времени они сжимаются, освобождая часть заключенной в сетке (интермицеллярной) жидкости. Это явление, называемое синерезисом, обусловлено нарастанием числа и прочности контактов между частицами во времени, а в некоторых случаях — появлением кристаллизационных мостиков, соединяющих частицы (как в системах второго типа). Такой процесс срастания частиц может, в конце концов, привести к образованию монолитного сплошного кристалла. Так, в течение геологических эпох в природе идет процесс золь ЗЮ2- силикагель— опал- халцедон-> кварц. Синерезису благоприятствуют все факторы, способствующие коагуляции. [c.270]

    В основе некоторых методов очистки от высокодисперсных фракций загрязнений лежит явление потери агрегативной устойчивости в результате объединения частиц под влиянием специально вводимых коагулянтов или флокулянтов. Коагуляция или флокуляция приводят к потере системой седиментационной устойчивости, к образованию коагулятов. Поскольку коагуляты накапливаются в водоочистительных устройствах, большое значение приобретают их структурно-механические свойства (см. гл. XIV), как основной фактор, проявляющийся при длительной эксплуатации установок. [c.331]

    В фундаментальных работах Б. В. Дерягина и его школы развиты представления об основном термодинамическом факторе устойчивости коллоидных систем — расклинивающем давлении в тонких слоях жидкости — и экспериментально изучены дисперсионные межмолекулярные силы. В.месте с Л. Д. Ландау им создана современная теория устойчивости и коагуляции лиофобных золей электролитами независимо и несколько позднее эта теория была развита Е. Фервеем и Дж. Овербеком. Б. В. Дерягиным совместно с Н. В. Чураевым, Г. А. Мартыновым, Д. В. Федосеевым, 3. М. Зориным сделан крупный вклад в развитие учения о поверхностных силах, устойчивости тонких слоев, зародышеобразовании, массопереносе в дисперсных системах и в другие области исследования коллоидно-поверхностных явлений. [c.11]

    На процесс седиментации может накладываться агрегирование капелек эмульсии, называемое флокуляцией-, флокуляция ведет к увеличению эффективного размера оседающих агрегатов и вследствие этого к увеличению скорости их оседания. В водных системах, в которых значительную роль играет электростатический фактор стабилизации, закономерности флокуляции близки к рассматриваемым в следующем параграфе закономерностям коагуляции гидрозолей и описываются теорией ДЛФО. Как показали исследования последних лет, [c.289]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Коагуляционные структуры. К ним относятся структуры, обычно возникающие в результате понижения агрегативной устойчивост дисперсных систем. При истинной коагуляции, когда частицы полностью теряют фактор устойчивости (двойн электрический слой сольватную оболочку и т. д.), они слипаются друг с другом, образуя компактные агрегаты. Достигнув определенного размера, эти агрегаты образуют плотный коагулят (или коагулюм). Если же происходит неполная астабилизация системы, то фактор устойчивости будет снят только с некоторых участков поверхности частиц, Да и то не полностью, и в результате этого частицы, слипаясь по таким местам, образуют пространственную сетку, в петлях которой находится дисперсионная среда. Происходит, как принято говорить, гелеобразование или образование лиогеля. Вид струк- [c.315]

    В связи с потребностями техники бурения было тщательно исследовано суспендирующее действие неионогенных поверхностноактивных веществ на глины в присутствии хлорида кальция и не4)ти. Поверхностноактивное вещество адсорбировалось на поверхности частиц глины, ориентируясь к ней окси-этиленовыми группами, обращенные же наружу углеводородные радикалы сольватировались нефтью, связывая ее тонкие слои [62]. Таким образом,, в этой системе основным фактором, определяющим устойчивость, является сольватация. Было показано, что зависимость скорости седиментации суспензий сажи в водных растворах поверхностноактивных веществ (додецилбензолсульфоната, диоктилсульфосукцината и полиоксиэтиленового эфира октилфенола) от концентрации не изменяется монотонно, а характеризуется кривыми с максимумами это показывает, что скорость седиментации и коагуляции определяется не только значениями электрокинетического потенциала [63]. Некоторые низкомолекулярные полиэлектролиты, а именно поликарбоновые кислоты акрилового ряда и лигнинсульфоновые кислоты, представляют собой, прекрасные диспергирующие и суспендирующие средства для различных твердых дисперсных материалов. Их эффективность обусловлена совместным влиянием высокого заряда и сильной адсорбции, обусловливающей образование защитной пленки. [c.351]

    В коллоидных системах к этому добавляется еще эффект рассеяния света коллоидными частицами, наиболее значительный для лучей г риьигрй л.пинпй нплны. т. е. для синих и фиолетовых лучей. Этот фактор действует значительно слабее, чем избирательное поглощение колебаний с определенной длиной волны, однако влияние его все же заметно проявляется. Вследствие этого в отраженном (точнее говоря, в рассеянном) свете большинство бесцветных коллоидных растворов имеет синеватый оттенок, а в проходящем свете, соответственно, — оранжевый или красноватый, так как проходящий свет частично лишается синих и фиолетовых лучей. Если само вещество дисперсной фазы коллоида окрашено, то коллоидный раствор приобретает интенсивную окраску. Таковы, например, оранжевые золи сернистого мышьяка или темно-коричневые золи гидроокиси железа. При этом в некоторых случаях на цвет раствора оказывает влияние и степень дисперсности. Так, высокодисперсные золи золота окрашены в ярко-красный цвет при уменьшении степени дисперсности цвет их изменяется и становится темно-синим при коагуляции. [c.536]

    Некоторыми исследователями сделан вывод о возможности стабилизации эмульсий ненасыщенными слоями стабилизатора, представляющими собой подобие двумерного газа из ориентированных дифильных молекул. Ненасыиденность таких слоев, имеющая место и в латексных системах дала повод в данном случае усомниться в стабилизирующем действии структурно-механического фактора, тем более, что проведенные измерения не показали наличия структурной и даже просто повышенной вязкости оболочек из поверхностно-активных веществ на межфазной границе. Кроме того, показано, что стабильные эмульсии могут быть получены при помощи эмульгаторов (некаль, триэтаноламин), заведомо не способных давать механически прочные адсорбционные пленки. И, наконец, если бы устойчивость эмульсий обуславливалась только структурно-механическим фактором, невозможно было бы наблюдаемое в ряде экспериментов соблюдение известного правила электролитной коагуляции Шульце—Гарди. С. М. Леви и О. К. Смирновым обнаружено отсутствие в широких пределах связи между длиной углеводородного радикала молекулы эмульгатора и стабильностью коллоидной системы, что также говорит против объяснения устойчивости эмульсий только образованием на поверхности глобул механически прочного адсорбционного слоя. [c.12]

    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    Принято считать, что типичные лиофобиые системы агрегативно устойчивы благодаря проявлению электростатического фактора стабилизации и коагулируют при введении в систему сравнительно небольших количеств любых электролитов. Наименьшая концентрация электролита Си, при которой начинается коагуляция (медленная), называется порогом коагуляции. Быстрая коагуляция требует такой концеитрацин электролита с , после увеличения которой скорость коагуляции остается постоянной (когда фактор устойчивости W=, или потенциальный барьер = 0). [c.333]

    Наибольшим разнообразием факторов устойчивости и методов коагуляции отличаются дисперсные системы с жидкой дисперсионной средой. Для них характерны все ранее рассмотренные как термодинамические, так и кинетические факторы устойчивости, поскольку только в жидких средах наблюдается диссоциация электролитов, вызывающая образование двойных электрических слоев, и сольватация, при которой возможно резкое снил ение межфазного натяжения. В жидких средах можно наблюдать адсорбционное понижение поверхностной энергии до минимальных значений, компенсирующихся энтропийным расталкиванием. В результате этого становится возможным самопроизвольное диспергирование нли образование гетерогенных дисперсных систем, устойчивых практически неограниченное время. В жидких средах возможно изменение плотности фаз в широких пределах, что, например, позволяет значительно легче достигать термодинамической устойчивости по отношению к седиментации (седиментацион-по-диффузионное равновесие). Для дисперсных систем с л<идкой дисперсионной средой, безусловно, возможно регулирование и кинетических факторов устойчивости к коагуляции и седиментации (изменение вязкости среды). [c.342]

    Если поверхностный потенциал уменьшается или ионные силы увеличиваются (одновременно), то энергетический барьер понижается до значения, сравнимого с величиной кТ, показывая, что система будет подвергаться медленной флокуляции. Переход от высокой стабильности через медленную флокуляцию к быстрой (т. е. к исчезновению потенциального энергетического барьера) является непрерывным, без резкой флокуляцион-ной точки. Поэтому важно рассмотреть зависимость между кривой потенциальной энергии п скоростью флокуляции. При этом надо учитывать, что величина общей энергии является разностью между двумя большими (почти равными) значениями. Следовательно, вычисленная кривая очень чувствительна к игнорированию различных факторов. Сопоставление теоретических и экспериментальных данных нри медленной коагуляции связано с большими трудностями. Тем не менее, это единственное средство проверки теории стабильности, так как пределы высокой стабильности или быстрой флокуляции являются независимыми переменными. [c.99]

    Между частицами дисперсной фазы так же, как и между молекулами, действуют ван-дер-ваальсовы силы (ориентационные, индукционные и дисперсионные). Поэтол у в дисперсных системах с различной скоростью, зависящей от ряда параметров системы и внешних факторов, происходит слипание частиц, получившее название коагуляции. [c.135]

    В свое время были сделаны попытки трактовать агрегативную устойчивость лиофобных коллоидных систем с позиций термодинамики. Ряд авторов (например, Марх), учитывая, с одной стороны, положительную свободную энергию поверхности раздела и, с другой стороны, понижение свободной энергии в результате образования на частицах двойного электрического слоя, а также энтропию системы пытались определить условия, при которых фактор, способствующий коагуляции, уравновешивается противодействующим фактором, и поэтому коллоидная система является агрегативно устойчивой. Однако все эти попытки, за исключением специальных случаев (см. гл. УП1), кончились неудачей, так как эти авторы не учитывали, что при слипании частиц поверхность раздела частица — дисперсионная среда существенно не меняется (см. гл, I) [c.260]

    Для систем с коагуляционными структурами характерен си-нерезис — самопроизвольное уменьшение размеров геля с выделением из него дисперсионной среды. Причиной синерезиса является постепенное увеличение числа контактов между частицами, образующими гель. Этот процесс термодинамически выгоден и возможен вследствие теплового движения. Ему способствуют все факторы, способствующие коагуляции. Созревание сыра (сыр со слезой ), черствение хлеба, отмокание — вот примеры процесса синерезиса в студнях. Синерезис происходит и в живых клетках — мясо старых животных твердо и жилисто вследствие синерезиса белковых гелей. Продукт синерезиса — синергетический сгусток обычно сохраняет форму исходного геля, изменяются только его размеры. Эластичные гели (студни) способны набухать, поглощая растворитель таким образом, в этих системах процесс синерезиса обратим. [c.434]

    Коагуляция аэрозолей и осаждение аэрозольных частиц. Аэрозоли — неустойчивые дисперсные системы, в которых интенсивное броуновское движение вызывает уменьшение концентрации частиц. Они не имеют факторов стабилизации, характерных для лиозолей. Однако во многих случаях скорость их естественной коагуляции недостаточна, а распределение частиц в пространстве нежелательно. Это в первую очередь относится к отходящим газам промышленного производства. Для очистки газов увеличивают число соударений частиц, применяя звуковые колебания частотой 1—10 кГц. Иногда скорость коагуляции повышают, вводя в систему с газовой дисперсной фазой другой аэрозоль с более крупными частицами. Крупные частицы служат ядрами конденсации, на которых скапливаются мелкие частицы коагулируемого аэрозоля. [c.190]

    Коагуляция в аэрозольных системах происходит значительно энергичнее по сравнению с лиозольными благодаря интенсивному броуновскому движению. Процесс интенсифицируется с ростом частичной концентрации (число частиц в 1 см ). Так, если при частичной концентрации от 10 ° до 10 коагуляция происходит в доли секунды, то при 10 -4-10 о<на идет примерно в течение получаса и, наконец, при 10 -4-10 затягивается до нескольких суток. Практически аэрозольные системы являются системами примерно в 10 10 раз более разбавленными, чем лиозольные (например, обычный лио-золь золота содержит 10 частиц в 1 см ). Однако положения, относящиеся к устойчивости золей, могут быть отнесены и к аэрозолям. Естественно, что на скорость коагуляции аэрозолей влияют и конвекционные воздействия, механическое перемещивание, ультразвуковые колебания и другие факторы, способствующие столкновению частиц. [c.248]

    Коагуляция моягет происходить при введении различных электролитов и неэлектролитов, механическом воздействии, нагревании или замораживании. Наиболее важное место среди астабилизующих факторов занимает введение электролитов. Электролитная коагуляция особенно ярко протекает в тех коллоидных системах, в которых стабилизатор имеет ионный характер и устойчивость в огромной степени обеспечивается электростатическим отталкиванием коллоидных частиц. Коагулирующее действие электролита заключается в его влиянии на свойства двойного электрического слоя, в результате чего происходит уменьшение электростатического отталкивания частиц, а значит и возможное их слипание. В зависимости от интенсивности коагулирующего влияния электролита возмонша различная вероятность слипания частиц (меньшая или равная единице) и, соответственно, протекает медленная или быстрая коагуляция. Подробное описание механизма и правил электролитной коагуляции излагается в учебниках по коллоидной химии. [c.107]

    Коагуляция разбавленных золей при недостаточно эффективной их стабилиза1[хии (или при введении электролитов в систему, стабилизированную только за счет электростатического фактора устойчивости) для изометричных частиц обычно приводит к возникновению отдельных агрегатов. В результате система теряет [c.355]


Смотреть страницы где упоминается термин Система коагуляции фактор: [c.187]    [c.546]    [c.609]    [c.26]    [c.273]    [c.102]    [c.322]    [c.432]    [c.150]    [c.350]   
Химия протеолиза Изд.2 (1991) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Коагуляция коллоидных систем под действием физических факторов

Система к коагуляции

Факторы системы



© 2024 chem21.info Реклама на сайте