Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость дисперсных систем факторы устойчивости

    Та или иная дисперсная система предназначена для выполнения определенных функций служить исходным материалом для формования строительной конструкции, если это цементная смесь исполнить роль защитной или декоративной краски, если это суспензия пигмента подчинить движение жидкости воздействиям магнитного поля, если это коллоидный раствор ферромагнетика, и т. д. Возможность дисперсной системы выполнить предназначенную ей функцию зависит от ее рецептуры — наличия в составе системы частиц вяжущих, окрашенных или магнитных материалов. Однако качество продукта и технологичность его применения и получения определяются общим свойством любых дисперсных систем вне зависимости от их рецептуры — их устойчивостью. Устойчивость — это способность системы сохранять постоянство своих свойств во времени или при достаточно сильном изменении условий. Среди разнообразных свойств всеобъемлющим является равномерность распределения дисперсного материала по всему объему системы. Она определяется многими факторами, к числу которых относится устойчивость к некоторым частным конкретным изменениям состояния системы, среди которых наиболее важна устойчивость против коагуляции и оседания частиц. Терминология, касающаяся устойчивости, сложилась до того, как были выявлены многие детали и варианты изменения состояния взвесей. По этой причине толкование ряда понятий приобрело неоднозначность. Так, коагуляция — это слипание частиц и, кроме того, разрушение дисперсной системы, при которой происходит ее разделение на фазы осадок, дисперсионную среду. Слипание частиц, сопровождающееся не разрушением, а лишь изменением состояния системы, иногда желательным и полезным. Агрегативная устойчивость — способность дисперсной системы противостоять слипанию частиц в том или ином понимании сути этого явления. Слипание может быть разным как по характеру, так и по силе сцепления частиц. Понятие кинетической устойчивости обычно характеризует способность взвеси противостоять расслаиванию (оседанию частиц) за некоторый конечный интервал времени. Термодинамическая устойчи- [c.624]


    Как следует из рассмотренных выше данных по используемым в России МУН, в основе большой части составов лежат различные дисперсные системы - гели, суспензии, осадки, мицеллярные растворы. Нефть также представляет собой дисперсную систему, и, соответственно, все процессы в нефтяном пласте следует рассматривать исходя из представлений коллоидной химии. В частности, большое значение имеют вопросы строения и устойчивости дисперсных систем, в частности суспензий, поскольку это - важнейшие факторы, определяющие эффективность. По Дерягину [52], следует различать несколько видов устойчивости  [c.39]

    Из коллоидной химии известно, что любая дисперсная система обладает агрегативной и кинетической устойчивостью, которые, в свою очередь, зависят от наличия факторов стабилизации и дестабилизации дисперсной системы. Наличие и действие указанных факторов определяется физикохимическими и электрокинетическими свойствами компонентов, входящих в дисперсную систему. Таким образом, целесообразно предварительно рассмотреть современное состояние и основные положения теории устойчивости коллоидных систем с жидкой дисперсионной средой во внешних электрических полях. [c.6]

    Из элементарных курсов общей химии и физики известно, что вследствие сильно развитой межфазной поверхности гетерогенные дисперсные системы обладают большим избытком свободной поверхностной энергии и, следовательно, являются в принципе неустойчивыми. Позднее мы еще обсудим этот вопрос и покажем, что данное утверждение, которое во многих случаях не вызывает возражений, не настолько правильно, чтобы его абсолютизировать. Возникает вопрос, в какой мере законно применение термодинамических зависимостей к фазовым равновесиям в подобных системах. Гетерогенная дисперсная система может приобретать за счет замедляющих кинетику факторов известную устойчивость, позволяющую ей существовать в дисперсном состоянии достаточно долгое время. В течение этого времени вследствие молекулярного переноса (например, благодаря диффузии) устанавливается такое распределение ее компонентов в объеме и около межфазной поверхности, которое практически соответствует равновесию. Очевидно, что возникающее при этом состояние можно анализировать на основе соответствующих термодинамических представлений. В дальнейшем при рассмотрении вопроса об устойчивости лиофобных коллоидов мы увидим, что такая устойчивость действительно существует и именно этим объясняется широкое распространение подобных систем в природе и технике. Если какая-либо жидкость диспергирована в газе или п другой жидкости, то состояние относительного равновесия, о котором мы говорили выше, придает частицам термодинамически устойчивую форму — форму с наименьшей поверхностью, которая в простейшем случае является сферической. Не будем приводить других аргументов в пользу приложимости термодинамики равновесных систем к дисперсным гетерогенным системам и перейдем к рассмотрению самой термодинамики гетерогенных систем. [c.75]


    Гидродинамический фактор, который в разбавленных дисперсных системах проявляется в процессах седиментации и диффузии, здесь сводится к процессу вытекания жидкости из жидких слоев под действием капиллярных сил и под влиянием гидростатического и расклинивающего давления. Таким образом, проблема устойчивости концентрированных пен и эмульсий сводится к решению вопроса о том, почему и как жидкостные перегородки в этих клеточных структурах утончаются и при какой толщине, почему и как они внезапно разрушаются. К сожалению, эти системы подробно не рассмотрены. Вместо этого предлагались различные теории, призванные объяснить устойчивость пен и эмульсий влиянием од-ного-единственного фактора на основе одного-единственного механизма. В результате большой и многообразный экспериментальный материал, касающийся центральной проблемы науки о пенах и эмульсиях — их устойчивости, до сих пор не обобщен в рамках единой теории. Отдельные попытки теоретического объяснения экспериментально установленных фактов носят отрывочный и крайне противоречивый характер. Обстоятельные книги Клейтона [1 1 и Бикермана [2] дадут читателю представление о состоянии этой проблемы. [c.222]

    Таким образом, из рассмотренных возможных случаев взаимодействия частиц следует, что дисперсная система агрегативно устойчива только при высоком энергетическом барьере сил отталкивания. Поэтому все те факторы, которые снижают величину энергетического барьера Л(7б, неизбежно понижают агрегативную устойчивость системы. [c.429]

    Таким образом, адсорбционные макромолекулярные слои являются весьма сильным фактором стабилизации, обеспечивая устойчивость дисперсной системы даже при очень высоких концентрациях дисперсной фазы. Наряду со структурно-механическими свойствами (высокая вязкость и прочность), стабилизирующее действие этих слоев обусловлено и другими причинами. [c.261]

    Пены представляют собой высококонцентрированные дисперсные системы, состоящие из газовых пузырьков (ячеек), разделенных тонкими пленками жидкости. Пленки образуют жесткий каркас, в результате чего иена обладает устойчивостью. Устойчивость пены зависит от наличия поверхностно-активных веществ (ПАВ), вязкости жидкости, давления паров жидкости, условий испарения жидкости с поверхности п других факторов. Характеристикой устойчивости пенЕ) является время, необходимое для полного разрушения всего столба или определенной доли его. [c.145]

    Коагуляция латекса. Латекс представляет собой устойчивую дисперсную систему. Факторами относительно высокой устойчивости латекса как дисперсной системы, сохраняющейся в течение нескольких часов без существенных изменений, являются следующие  [c.26]

    Сильнейшим фактором стабилизации, позволяющим получать весьма устойчивые дисперсные системы, является структурномеханический барьер, возникающий в результате адсорбции на поверхности низко- и высокомолекулярных ПАВ. При этом качестве стабилизаторов могут выступать даже слабые ПАВ, но способные к образованию гелеобразных структур в адсорбционном слое. В частности, многие природные полимеры - глюкозиды, белки, производные целлюлозы, обладающие в пределах молекулы участками с разной гидрофильностью, относят к группе так называемых защитных коллоидов. [c.42]

    Б. В. Дерягин отмечает [161], что в теории слипания коллоидных частиц положения термодинамики Гиббса недостаточны и приходится рассматривать энергию системы в функции толщины прослоек между ними, так как при этом выявляется в качестве контролирующего фактора энергетический барьер, являющийся макроскопическим аналогом энергии активации процессов, идущих на молекулярном или атомном уровне. Этот потенциальный активационный барьер способен тормозить коагуляцию практически до полной остановки, обеспечивая устойчивость дисперсной системы. [c.24]

    Устойчивость любой дисперсной системы, в том числе и суспензий микроорганизмов, определяется неизменностью во времени равновесного распределения дисперсной фазы в объеме среды. Существует два типа устойчивости седиментационная и агрегативная. Под первой понимают способность частиц противостоять силе тяжести. Вторая характеризует способность системы в течение достаточно длительного времени сохранять степень дисперсности, что проявляется в отсутствии процесса укрупнения частиц (капель) дисперсной фазы за счет их взаимодействия и объединения в агрегаты. Отмеченные два типа устойчивости тесно связаны друг с другом. Нарушение агрегативной устойчивости снижает седиментационную устойчивость дисперсии, что способствует осаждению частиц. Таким образом, предпосылкой освобождения дисперсной среды от всевозможных примесей при помощи коагуляционных методов является поиск путей снижения агрегативной устойчивости суспензий, золей, эмульсий. Теоретический фундамент для исследований в этом направлении составляют представления о факторах агрегативной устойчивости дисперсных систем. [c.5]


    Выше неоднократно отмечалось, что лиофобные дисперсные системы, вследствие большого избытка свободной поверхностной энергии на границе раздела фаз, являются термодинамически неустойчивыми по сравнению с соответствующими макрогетерогенными системами. Вместе с тем многие лиофобные дисперсные системы могут быть агрегативно устойчивы и сохранять эту устойчивость сколь угодно долго. В таких системах действуют те или иные факторы, способствующие стабилизации. В данном параграфе рассмотрены термодинамические и кинетические факторы стабилизации дисперсных систем, причем некоторые из этих факторов здесь только названы, а подробно описаны в отдельных параграфах. [c.253]

    В течение длительного времени считалось общепринятым, что все коллоидные системы, в отличие от истинных растворов, термодинамически неустойчивы, однако в последнее время [179] были развиты представления о том, что в определенных условиях и дисперсные (микрогетерогенные) системы термодинамически устойчивы, т. е. могут существовать без специальных стабилизирующих факторов. В отличие от таких лиофильных дисперсных систем лиофобные дисперсные системы принципиально термодинамически неустойчивы, понятие об их устойчивости носит кинетический характер для повышения их устойчивости необходимо введение стабилизаторов. [c.244]

    На переход от устойчивого к неустойчивому режиму оказывают непосредственное влияние скорость сплошной фазы, объемное содержание дисперсной фазы и отношение перепада давления на входе в слой к перепаду давления в слое [39]. Нами было исследовано влияние вышеперечисленных факторов на гидродинамическую устойчивость дисперсной системы при ее ожижении жидкостью [40]. В качестве критерия стабильности использовались значения коэффициента вариации К , характеризующего распределение частиц по размерам в данной области слоя  [c.197]

    Для увеличения агрегативной устойчивости дисперсной системы необходимо уменьшить фактор интенсивности—поверхностное натяжение а, сохраняя неизменной суммарную поверхность раздела между фазами (фактор емкости Д5 в уравнении д/ =аД5). Эту роль в стабилизации концентрированных эмульсий и суспензий выполняют эмульгаторы в виде поверхностноактивных веществ. Как известно (стр. 68 и 78), поверхностноактивные вещества, проявляя положительную адсорбцию, снижают межфазное поверхностное натяжение а. Если к тому же поверхностно-активный эмульгатор представляет собою электролит, то стабилизирующее его действие вследствие избирательной ионной адсорбции одновременно усиливается и за счет образования двойных электрических слоев вокруг частиц эмульсии. [c.249]

    Концентрация пигмента в лакокрасочном латексе обычно колеблется в пределах 30—40% если она составляет более 50%, то снижается устойчивость дисперсной системы. При использовании органических пигментов известные трудности возникают в виду их гидрофобности, зато в большинстве своем они не содержат примесей, вредно влияющих на стабильность латекса. Широко распространены в качестве пигментов фталоцианиновый синий, фталоцианиновый зеленый, ганзейский желтый, ультрамариновый синий и др. В ряде случаев стабильность дисперсной системы нарушается в результате несоблюдения определенной последовательности смешения компонентов. Как правило, полимерный латекс добавляется в предварительно приготовленную дисперсию пигмента в растворе стабилизатора и вспомогательных веществ. Агломераты частиц могут образоваться также в результате многократного замораживания дисперсии или нагревания ее до высоких температур. Действие этих факторов необходимо исключить, в особенности при хранении латексных водных дисперсий, готовых к употреблению. [c.272]

    Важным фактором, влияющим на коллоиднохимический механизм образования межфазного слоя, является близость значений поверхностного натяжения гомополимеров (20—80) 10 Н/м, обусловливающих довольно низкие значения межфазного натяжения (табл. 1) [39]. Расчет межфазного поверхностного натяжения для пар несовместимых полимеров показал, что характеристическая толщина межфазного слоя пропорциональна (Х — /г) для небольших значений параметра Хаггинса [40—42]. Установлено снижение плотности вещества вблизи границы раздела [41]. Особенностью полимер-полимерных систем, определяемой межфазным натяжением, является образование устойчивой дисперсной системы в результате индуцированного диспергирования при нагревании и механическом воздействии. [c.18]

    Сточные воды являются, как правило, агрегативно устойчивыми дисперсными системами. Устойчивость их может быть обусловлена различными факторами. [c.90]

    Другие факторы. На процессы коагуляционной очистки сточных вод значительное влияние могут оказывать электрические и магнитные поля, ультразвуковые колебания и др. Так, наложение электрического и магнитного полей может приводить к снижению устойчивости дисперсной системы [118, с. 14 154, с. 26]. Ультразвуковые колебания также при определенных условиях могут обусловливать снижение устойчивости дисперсных систем и особенно устранение адсорбционно-сольватного и структурно-механических факторов стабилизации эмульсий типа масло — вода [155]. [c.99]

    Таким образом, если в разбавленных коллоидно-дисперсных системах их основные свойства — агрегативная и седиментационная устойчивость — зависят от соотношения взаимодействия частиц дисперсной фазы и участия частиц в тепловом (броуновском) движении, то в высококонцентрированных микрогетерогенных системах с твердыми фазами наряду с этими факторами преимущественное значение приобретает конкуренция между сцеплением частиц и интенсивностью внешних механических воздействий на дисперсную систему. [c.46]

    Электростатическая теория устойчивости дисперсных систем приложима к тем системам, устойчивость которых обеспечивается только электростатическим фактором. В реальных же дисперсных системах наблюдается в лучшем случае преобладание того или иного фактора устойчивости. Однако электростатический фактор устойчивости характерен для наиболее распространенных систем с водными средами, создающими условия для диссоциации. Механизм образования электростатического барьера связан с механизмом образования двойного электрического слоя поверхностная диссоциация вещества частиц, адсорбция электролитов, в том числе ионогенных ПАВ и ВМС, и ориентирование диполей молекул растворителя илн растворенных веществ. Так как электростатический барьер определяется, главным образом, электрическим потенциалом и толщиной двойного электрического слоя (VI. 103), то, очевидно, он будет возрастать с увеличением поверхностной диссоциации, количества адсорбируемых потенциалопределяющих ионов и прочности их закрепления, а также с уменьшением взаимодействия противоионов с поверхностью (увеличение толщины двойного слоя). При наличии на поверхности функциональных групп, обладающих слабыми кислотно-основными свойствами, значение потенциала и соответственно потенциального барьера зависит от pH среды. Электролит-стабилизатор должен иметь одии иои с достаточным сродством к веществу частицы (заряжение поверхности), другой—к растворителю (для обеспечения диссоциации электролита-стабилизатора и достаточной толщины двойного слоя). [c.332]

    Для рассматриваемого типа НДС фактором, определяющим устойчивость, является структурно-механический барьер, концепция которого была предложена Ребиндером [17].Он имеет место в дисперсных системах со структурированными межфазными слоями, сформированными в результате адсорбции из раствора ПАВ. [c.27]

    Этот эффект, обнаруженный ранее нами на модельных топливных системах, связан с тем, что в НДС со вторичными асфальтенами определяющим является кинетический фактор устойчивости, за счет которого менее дисперсные лиофобные системы могут удерживать в растворе достаточно крупные агрегаты асфальтенов. [c.111]

    Следовательно, по мере снижения атомного отношения И С и увеличения числа колец в ароматической структуре второго компонента в дисперсионной среде равновесие сдвигается в сторону повышения устойчивости системы. Поэтому не случайно даже при небольших добавках (8,0%) второго компонента — смол, выделенных из гудрона арланской нефти,— удерживающая способность й-гептана существенно возрастает (рис. 35). Была проведена [84] оценка устойчивости нефтяных дисперсных систем в лабораторны.х условиях по фактору устойчивости. Фактор устойчивости (Ф) характеризует сиособность нефтяной дисперсной системы сохранять в течение определенного времени одинаковое в каждой точке системы распределение частиц асфальтенов и представляет собой отношение концентрации асфальтенов, устанавливающейся за время т, в двух слоях, отстоящих друг от друга на определенном расстоянии, в направлении сил осаждения. [c.139]

    Насколько характерными для дисперсных систем являются те или иные факторы устойчивости и стабилизации можно представить, рассмотрев системы в соответствии с агрегатным состоянием их дисперсионных сред. [c.341]

    Рассмотренные в предыдущих разделах факторы и закономерности устойчивости и коагуляции в дисперсных системах относи  [c.342]

    В значительной степени технологические свойства промывочных жидкостей определяются их устойчивостью, т. е, сохранением во времени основных параметров дисперсной системы дисперсности (удельной поверхности) и равномерного распределения дисперсной фазы в дисперсионной среде (одинаковая плотность по объему). Знание основных факторов устойчивости дисперсных систем и причин, ведущих к ее нарушению, позволяют обоснованно управлять свойствами промывочных жидкостей при бурении, [c.65]

    Оба эти фактора взаимосвязаны и в больщинстве промывочных жидкостей действуют одновременно. Вклад факторов в обеспечении устойчивости зависит от типа дисперсной системы. [c.66]

    Пластичные смазки занимают промежуточное положение между жвдкими и твердыми смазочными материалами. Они представлякл собой структурированные коллоидные системы. Их свойства зависят прежде всего от особенностей трехмерного структурного каркаса, образующегося из дисперсной фазы, который в своих ячейках удерживает большое количество (80-90 %) дисперсионной среды. Устойчивость структурированной системы зависит от прочности структурного каркаса, сил взаимодействия между его отдельными частицами, между элементами структурного каркаса и дисперсионной средой на транице раздела фаз, числа контактов частиц каркаса в единице объема, электростатических свойств, критической концентрации ассоциации различных мыл и других коллоидно-химических факторов. [c.354]

    Энергия взаимодействия частиц определяется балансом сил притяжения и отталкивания, зависящим в свою очередь от природы СИЛ и расстояния между частицами. Физическая теория устойчивости ионно-стабилизированных КОЛЛОИДНЫХ растворов основана на учете ван-дер-ваальсовых сил притяжения и электростатического отталкивания диффузных слоев адсорбированных ионов. Теория развита отдельно для сильно и слабо заряженных поверхностей в применении к разным дисперсным системам. Представляет ин-терес исследование не только коагуляции, но и значительно менее разработанного механизма пептизации, в частности понижения прочности агрегатов, образованных коагуляцией первичных частиц. Весьма актуальна разработка теории взаимодействия неионно-стаби-лизированных частиц, учитывающая действия сольватации, адсорбционных слоев ПАВ, полимеров и другие факторы устойчивости. Остается открытым вопрос о влиянии кинетических факторов на контактные взаимодействия. [c.8]

    Как показано выше, устойчивость дисперсных систем и коагуляция отражают непосредственно взаимодействие частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости, учитывающей механизм этих взаимодействий, должно лежать соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными ван-дер-ваальсовыми силами. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий устойчивости и коагуляции, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории односторонние, они не учитывают и не объясняют многие факты. [c.375]

    Агрегативная устойчивость дисперсных систем, т. е. способность систем сохранять степень дисперсности, зависит от смачивающей способности дисперсионной жидкой среды. В отличие от коллоидных систем в грубых дисперсных системах (взвесях) с размерами частиц до 50—60 мкм этому фактору принадлежит решающее значение, а электрическому заряду — подчиненное. Агрегативноустойчивыми являются суспензии, частицы которых смачиваются жидкостью. При хорошем смачивании при участии межфазовоактивных веществ образуются сольватные оболочки, препятствующие слипанию частиц. Например, частицы А Оз неустойчивы в бензоле, но им можно придать устойчивость прибавлением поверхностно-активного вещества — олеиновой кислоты. [c.181]

    Опытным путем было установлено, что добавление высокопо-лимеров к коллоидным растворам значительно повышает устойчивость последних по отношению к электролитам и другим факторам коагуляции. Повыщение устойчивости дисперсной системы, обусловленное присутствием высокомолекулярного соединения, получило название защитного д е ii с т в и я, или просто защиты. [c.226]

    Обсуждение результатов приведенньгх работ позволяет сделать вывод о том, что нельзя считать универсальным какой-либо один фактор устойчивости. Необходимо для каждой конкретной коллоидной системы устанав-ливатв причины стабилизации, принимая во внимание возможность одновременного действия ее различных механизмов. Относительная роль каждого из них может изменяться и зависит от конкретных обстоятельств типа стабилизатора, степени адсорбционной насьпценности частиц, концентрации дисперсной фазы и др. [7, 8]. [c.14]

    Соотношение (VI. 32) может быть использовано для оценки условий стабилизации дисперсных систем при обеспечении их определенным термодинамическим фактором устойчивости. Например, для определения величины адсорбции ПАВ на поверхности tia THu или его концентрации в дисперсионной среде, которые необходимы для устойчивости системы, достаточно объединить соотношение (VI. 32) с уравнением Шишковского (III. 117). Подобную оценку условий стабилизации можно провести и для минимального электрического потенциала, если сравнить соотношение i(VI.32) с уравнением электрокапиллярной кривой (11.77). [c.286]

    Роль размера частиц дисперсной фазы в устойчивости растворов полимеров связывает их с другими коллоидными системами. Уже можно утверждать, что для систем с компактными сферическими частицами дисперсной фазы отклонения от идеальности хотя и меньше, чем для систем, содержащих линейные макромолекулы, но они все равно остаются отрицательными. Таким образом, только различие в размерах частиц дисперсной фазы и молекул дисперсионной среды вносит вклад в энтропийный фактор устойчивости коллоидных систем. Этот вклад возрастает для лиозолей, стабилизированных с помощью ПАВ и особенно высокомолекулярных соединений. [c.324]

    Наибольшим разнообразием факторов устойчивости и методов коагуляции отличаются дисперсные системы с жидкой дисперсионной средой. Для них характерны все ранее рассмотренные как термодинамические, так и кинетические факторы устойчивости, поскольку только в жидких средах наблюдается диссоциация электролитов, вызывающая образование двойных электрических слоев, и сольватация, при которой возможно резкое снил ение межфазного натяжения. В жидких средах можно наблюдать адсорбционное понижение поверхностной энергии до минимальных значений, компенсирующихся энтропийным расталкиванием. В результате этого становится возможным самопроизвольное диспергирование нли образование гетерогенных дисперсных систем, устойчивых практически неограниченное время. В жидких средах возможно изменение плотности фаз в широких пределах, что, например, позволяет значительно легче достигать термодинамической устойчивости по отношению к седиментации (седиментацион-по-диффузионное равновесие). Для дисперсных систем с л<идкой дисперсионной средой, безусловно, возможно регулирование и кинетических факторов устойчивости к коагуляции и седиментации (изменение вязкости среды). [c.342]


Смотреть страницы где упоминается термин Устойчивость дисперсных систем факторы устойчивости: [c.19]    [c.303]    [c.208]    [c.474]    [c.187]   
Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.317 , c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсная система устойчивость

Дисперсные системы

Процессы в дисперсных системах, обусловленные агрегатнвнон неустойчивостью. Факторы агрегатнвнон устойчивости

Система устойчивая

Системы устойчивость

Устойчивость фактор

Факторы системы

Факторы устойчивости дисперсных систем



© 2025 chem21.info Реклама на сайте