Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен наполнители

    Очень перспективно введение в полиэтилен наполнителей. Работами В. А. Каргина и Т. И. Соголовой доказано, что при введении наполнителей резко повышается темпера- [c.74]

    Физиче кие свойства. Даже при введении в полиэтилен наполнителей нейтрального характера, таких как высокодисперсные [c.463]

    В качестве инертных наполнителей или разбавителей могут быть аэросил (5]02), вазелиновые и минеральные масла, углеводороды, полиэтилен, диметилфталат. [c.135]


    Коэффициент линейного расширения покрытия в 14 раз выше коэффициента линейного расширения металла. При покрытии полиэтиленом выпуклых поверхностей металлов разница в коэффициенте линейного расширения приводит к повышению адгезии при покрытии полиэтиленом вогнутых поверхностей возникают напряжения, направленные на отрыв покрытий, поэтому полиэтилен наносят на прослойки полиэтилена с наполнителями или же на эластичные грунтовочные лакокрасочные покрытия. [c.423]

    Скорость окисления полиэтилена можно снизить введением в него небольшого количества стабилизаторов—веществ, которые более активно, чем полиэтилен, реагируют с кислородом, проникающим в толщу материала. В полиэтилен одновременно добавляют некоторое количество наполнителя—вещества (например, [c.211]

    При сухом трении полиэтиленов и тефлона по стали были получены плавное скольжение и постоянные (сравнительно невысокие) значения коэффициента трения. Власовой и Носовой для повышения предельных нагрузок и уменьшения коэффициента трения полиамидов проводились работы по наполнению их антифрикционными добавками (графит, тальк, дисульфид молибдена). При этом было показано, что введение наполнителя в количестве 5—15 вес. % дает хорошие результаты. [c.364]

    При пиролизе в стандартных условиях различные полимеры дают характерные хроматографические спектры продуктов пиролиза (пирограммы). Четко выраженные, характерные пирограммы (для = 650°С и -г=10 с) имеют, например, полистирол (рис. 17.4), полипропилен (рис. 17.5), поливинилхлорид (рис. 17.6),полиэтилен (рис. 17.7) и другие полимеры и сополимеры. Пирограммы большого числа пластмасс также имеют свой характерный вид и заметно отличаются одна от другой. Инертные наполнители, содержащиеся в пластмассах, не искажают пирограмму чистого полимера. [c.245]

    Температура плавления его 103—104°С, температура разложения 120° С. Этот порофор представляет собой мелкий порошок, что обеспечивает возможность его равномерного смешения с полиэтиленом. Последний рекомендуется применять с этой же целью в виде мелких гранул. Желательно полиэтилен и порофор предварительно смешивать с инертным наполнителем (например, тальком) в соотношении 1 1. Перемешанный с порофором полиэтилен загружают, как обычно, в бункер шприц-пресса. Газообразование происходит в цилиндре и головке шприц-пресса одновременно с наложением изоляции. Реакция газообразования протекает по уравнению  [c.102]

    Под действием света и тепла в присутствии кислорода воздуха полиэтилен окисляется (старение). При старении макромолекулы полиэтилена соединяются кислородными мостиками, что вызывает изменение его химического состава и структуры. Полиэтилен приобретает сетчатую структуру, теряет пластические свойства и эластичность. Пленка полиэтилена становится жесткой и хрупкой. Для предотвращения старения в полиэтилен вводят антиокислители (стабилизаторы) ароматические амины, фенолы и сернистые соединения. Добавляют и некоторое количество наполнителей (например, сажу), которые повышают отражающую способность полиэтилена по отношению к ультрафиолетовым лучам, атмосферостойкость. [c.138]


    В состав пластмасс входят полимерные связывающие вещества, наполнители из древесной муки, стекловаты, бумаги, песка, асбестового волокна и др.. а также пластификаторы, обеспечивающие пластичность. В качестве связывающих полимеров наиболее часто используют поливинил, полистирол и полиэтилен. Последний является химически стойким, легким, влагонепроницаемым, токонепроводящим и легко обрабатываемым материалом. Он получается иа доступного и сравнительно дешевого сырья — этилена. [c.212]

    Некоторые фирмы используют наполненный полиэтилен для изготовления уплотнений поршней некоторых насосов, что является особенно нежелательным и опасным, так как ряд растворителей (таких как тетрагидрофуран, хлороформ, толуол) быстро разрушает такие уплотнения, при этом наполнитель попадает в поток растворителя и забивает капилляры, фильтры и Другие узлы. На это следует обращать особое внимание при выборе насоса для ГПХ, в который часто приме, няют такие растворители. [c.167]

    ПИБ совмещается с натуральными и синтетическим каучуками, некоторыми эластомерами (полиизопрен, сополимер бутадиена со стиролом и др.), термопластами (полиэтилен и полипропилен), восками, минеральными маслами, битумами, асфальтом и другими продуктами совмещается также с различными минеральными наполнителями и пигментами (технический углерод, графит, тальк, оксид магния, цинковые и титановые белила, мел). Введение наполнителей снижает хладотекучесть, повышает прочность и твердость, улучшает светостойкость. [c.361]

    Полиизобутилен обладает высокой химической стойкостью и водостойкостью. Он устойчив на холоду к воздействию разбавленных и концентрированных кислот, а также щелочей. При одновременном действии кислорода и света, особенно ультрафиолетовых лучей, полиизобутилен подвергается частичной деструкции. Светостойкость полиизобутилена и стойкость к воздействию кислорода повышается при совмещении с каучука ми, полиэтиленом и некоторыми другими полимерами, а также с такими наполнителями, как сажа и графит. Минеральные наполнители можно вводить в полиизобутилен.в количестве до 90% от массы полимера. [c.88]

    Однако поскольку полиэтилен в большей степени, чем сажа, увеличивает твердость вулканизатов, можно уменьшить наполнение каучука, применяя небольшие количества полиэтилена Добавки полиэтилена уменьшают теплообразование и увеличивают эластичность, не снижая твердости и модуля упругости вулканизата. В результате повышается износостойкость резины, что подтверждено эксплуатационными испытаниями шин. Если вводить полиэтилен без уменьшения содержания наполнителя, то эластичность снижается, а твердость и теплообразование повышаются 6. [c.59]

    Присутствие в облучаемом полиэтилене наполнителей значительно влияет на характер протекания в нем palio [c.110]

    Износ линейно возрастает при увеличении давления он тем меньше, чем меньше коэффициент трения покрытия и больше его адгезионная прочность. Покрытия с низкими значениями коэффициентов трения называются антифрикционными. Это, в первую очередь, полиамидные, фторопластовые, пентапласто-вые, полиэтиленовые, эпоксидные покрытия. Нередко для снижения коэффициента трения применяют смеси полимеров, например, полиамида и фторопласта (10 4), полиамида и полиэтилена (8 2), полиамида и поливинилбутираля (1 1). Их наносят на поверхность в виде порошков с последующим сплавлением. Коэффициент трения снижается, а стойкость к усталостному износу возрастает при введении минеральных (дисульфид молибдена, графит, тальк, оксид алюминия, барит, порошок свинца) и полимерных (фторопласты, полиэтилен) наполнителей, а также при пластификации покрытий. [c.78]

    ВИИ высоких температур. Показано, что в зависимости от природы модифицирующих компонентов, возможно формирование регулярных структур, обеспечивающих получение покрытий с заданными характеристиками (твёрдость, влагопоглощение, вязкость и другие свойства).Оптимизированы составы композиционных материалов на основе аминоформальдегидных олигомеров и хлорированных полимеров модифицированных четвертичными аммониевыми основаниями, алкилсульфонатами, карбоксиметилцел-люлозой и фосфатами аммония. Исследованы процессы межфазного взаимодействия на границе раздела модифицированное связующее - наполнитель. Показано, что введение в состав композиции модифицирующих добавок приводит к увеличению адсорбционного взаимодействия и смачивания и улучшает комплекс технологических и эксплуатационных характеристик. Исследовано влияние высоких температур на огнезащитные свойства разработанных материалов. Установлено, что наибольший коэффициент вспучивания и наилучшие огнезащитные свойства имеют композиционные материалы, содержащие в качестве основных компонентов - аминоальдегидный олигомер и поливи-нилацетат, а в качестве вспучивающих систем - фосфаты аммония и уротропин - хлор-сульфированный полиэтилен, модифицированный хлорпарафинами, а в качестве вспучивающих компонентов - полифосфат аммония и пентаэритрид. Разработаны технологические процессы получения огнезащитных материалов. Получены покрытия на субстратах различной природы (дерево, металл, кабельные покрытия) и разработана технология их нанесения. Проведен комплекс натурных испытаний при действии открытого пламени. Установлено, что огнезащитные материаты на основе реакционноспособных олигомеров могут быть успешно использованы для защиты металлов, при этом коэффициент вспучивания достигает 10-20 кратного увеличения толщины покрытия при эффективности огнезащиты - 0,5 часа. Состав на основе хлорсульфированного полиэтилена успешно прошёл испытания в качестве огнезащитного покрытия кабельных изделий. [c.91]


    Некоторые пластические массы, например полиэтилен, полиамиды, полностью состоят из полимера, в других же содержание высокомолекулярных соединений не превышает 20—60%, а остальное составляют так называемые ачполнители (древесная мука, стеклянное волокно, асбест и др.). Назначение наполнителей—изменение свойств пластмасс в желаемом направлении—придаЕше им механической прочности, твердости г гнестойкости и проч. Введение наполнителей широко используется при изготовление пластических масс из феноло-формальдегидных, мочевино-формальдегидных, эпоксидных, и некоторых других полимеров. [c.117]

    Методы защиты полимерных материалов от биоповреждений аналогичны используемым при защите ЛКП. Например, одним из важнейших условий получения стойких к воздействию микроорганизмов материалов является введение в их состав таких компонентов, которые не могут быть использованы микроорганизмами в качестве субстратов в процессе развития. Анализ химического состава пленок ПВХ показал, что после воздействия на них некоторых культур грибов и бактерий содержание пластификатора (ПДЭС-1) резко снижалось. Очевидно, это связано с использованием последнего в процессе жизнедеятельности микроорганизмов. Подобное явление наблюдалось при поражении грибами полиэтиленов. Биостойкость резко снижалась при введении в полиэтилены углеродсодержащих наполнителей или при использовании полиэтиленов с низкой молекулярной массой. Для повышения стойкости полимерных материалов достаточно было в первом случае заменить пластификатор, во втором — исключить наполнитель и применять полиэтилены с высокой молекулярной массой. [c.82]

    В последние годы нашей промышленностью разработаны и стали выпускаться вентиляторы из пластических материалов. Пластмассовый корпус выполнен двухслойным. Наружный слой обеспечивает прочность и жесткость конструкции, выполнен из стеклопластика, а внутренний — из токопроводящих низкоплавких термопластических материалов. В качестве последних применяется полиэтилен с наполнителем из графита или ацетиленнстой сажи до 20 % по объему. Рабочее колесо выполнено из прочных стеклопластичных материалов с антистатическими присадками. Для отвода статического электричества рабочее колесо и внутренний слой корпуса имеют заземления. [c.68]

    ПОРОШКОВЫЕ КРАСКИ, высокодисперсные композиции, применяемые для получения защитных, Д(-ко])атив ых и др. покрытий по металлу, бетону, стеклу, керамике и др. термостойким материалам. Осн. компоненты — пленкообразующие в-ва (эпоксидные или полиэфирные смолы, полиакрилаты, полиамиды, поливинилхлорид, пентаплаа, полиэтилен, поливинилбутираль, фторопласты и др.) и пигменты, напр, оксиды Сг, ре, Т , сажа содержат, крометого, пластификаторы, наполнители, отвердители, стабилизаторы, а также добавки, улучшающие сыпучесть краски н ее растекание по подложке. Изготовляют П, к. смешением сухих компонентов в мельницах (напр,, шаровых, коллоидных) или в турбосмесителях, а также смешением в расплаве в экструдерах или лопастных смесителях с послед, измельчением в дробилках. Размер частиц П. к. 10—300 мкм, толщина образуемых ими покрытий 50—400 мкм. [c.474]

    В последнее время опубликованы результаты поисковых исследовательских работ по включению жидких ра- диоактивных отходов в полиэтилен. Фитцджеральд и др. [177] на пилотной периодической установке в Ок-Ридже (США) включали в полиэтилен жидкие органические отходы, содержащие до 25% трибутилфосфата (ТБФ) или ССЦ. Эти же отходы включались и в битум. Однако органические отходы чрезмерно разжижали битум, продукт не затвердевал при комнатной температуре и нужно было добавлять неорганические наполнители (глину, коллоидный кремнезем, порошок графита и др.). Полиэтилен, достаточно текучий при 150° С, после включения до 30 вес. % ТБФ, не менял своих свойств. [c.99]

    АСБОПЛАСТИКИ, реакто- и термопласты, содержащие в кач-ве упрочняющего наполнителя асбестовый материал (см. Асбест) в виде порошка (прессовочные и литьевые массы), волокон (асбоволокнит), бумаги (а с б о г е-тинакс), тканей (асботекстолит). Связующими в А. служат термо реактивные синтетич. смолы, гл. обр. феноло-или меламино-формальдегидные, реже-кремнийорг., фура-нозые содержание связующего-50-70% от массы А. В состав пластиков 1 югут входить и др. наполнители, напр, асбоволокнит и асботекстолит иногда содержат тальк, SiO , а асбогетинакс-бумагу из смеси асбеста с небеленой сульфатной целлюлозой. Асбестовым порошком наполняют и термопласты, напр, полиэтилен, полистирол, ПВХ. [c.205]

    МЕТАЛЛОПОЛИМЕРЫ, металлонаполненные полимеры или пористые металлы, пропитанные полимерными ком-позицюгми. Наполнителями служат порошки, волокна и ленты, получаемые практически из любых металлов или сплавов (чаще всего Ре, Со, №, Лg, 5п, А1, Со, Ве, РЬ, 2п, 2г, Сг, Т1, Та), коррозионностойкие аморфные металлич. сплавы ( металлич. стекла ), металлизир. порошки и волокна неорг. или орг. природы. Металлич. порошки (микросферы, нитевидные кристаллы, чешуйки и частицы неправильной формы) имеют размер частиц 10-10 нм, размер волокон в поперечном направлении составляет 10 — 2 10 нм, ширина и толщина лент-соотв. 3-5 мм и (1-4)-10 нм. Металлами наполняют полиамиды, политетрафторэтилен, ПВХ, полиэтилен, эпоксидные, феноло-формальд. и полиэфирные смолы, кремшшорг. полимеры и полиимиды. [c.48]

    В качестве наполнителей для каучуков м.б. использованы также пластификаторы, напр. диоктилфталат феноло-, резорщшо-, анилино-, мочевино- или меламино-формальд. смолы, вводимые в латекс в готовом виде или синтезируемые в нем щелочной сульфатный лигнин тонкодисперсная аморфная кремниевая к-та 8102-иНзО (одна или вместе с маслом). Известны этилен-пропиленовые и др. каучуки, наполненные кристаллич. полиэтиленом или полипропиленом в кол-ве 15-60% (см. также Термоэластопласты). [c.168]

    Связующим в термопластичных О. служат, напр., полиуретаны, полиэтилен, полипропилен, фторопласты, ПВХ (табл. 2) содержание наполнителя 2-70% по объему. Упрочнение термопластов синтетич. волокнами в ряде случаев позволяет повысить ударную вязкость, улучшеть сопротивление усталости и растрескиванию под напряжением. [c.405]

    Отходы пластмасс подразделяют на производственные и потребления. Направления утилизации технол. отходов (глыбы, слитки, обрезки и др.) мех. переработка с целью приготовления той же продукции, при получении к-рой они образовались, и менее ответств. изделий (напр., с.-х. пленка и мешки для минер, удобрений, тара для упаковки хим. реактивов и товаров бытовой химии, детские игрушки) хим. переработка с получением чистых полимеров, пластификаторов, мономеров и их производных термич. переработка, напр, пиролиз с образованием сырья для орг. синтеза и углеродсодержащего остатка (основа активных углей, используемых в системах очистки отходящих газов и сточных вод). Загрязненные пром. и бытовые отходы применяют для строит, нужд (наполнители разл. изделия-плиты, блоки, трубы, кровля и др.) переработка таких отходов наиб, трудоемка, поскольку связана с их сбором, сортировкой, очисткой от посторонних примесей, уплотнением и гранулированием. Нек-рые виды пластмасс (полиэтилен, полипропилен, поливинилхлорид) способны к биодеструкции, т. е. могут разлагаться под действием бактерий, плесени и грибков для интенсификации процесса добавляют крахмал и Ре Оз, к-рые служат центрами биораспада. Разрушение пластмасс возможно под действием УФ излучения однако продукты распада отходов загрязняют окружающую среду. Осн. направления переработки пиролиз, деполимеризация с получением нсходных продуктов вторичная переработка. [c.436]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    СГЕаСЛОПЛАСТИКИ, полимерные материалы, армированные стеклянными волокнами. Связующее (матрица) в С.-гл. обр. термореактивные синтетич. смолы (фенольные, эпоксидные, полиэфирные, полинмидные, фурановые и др.) и термопласты (полиамиды, поликарбонаты, полипропилен, полистирол, полиэтилен, потаацетали и т.п.), а также эластомеры, неорг. полимеры. Наполнители-стеклянные мононити, комплексные нити, жгуты (ровинги), ткани, ленты, короткие волокна. [c.426]

    Марочный ассортимент ПЭНД (ГОСТ 16337-77) насчитывает 47 базовых марок, имеющих плотность в интервале 917-930 кг/м и ПТР в интервале 0,2—20 г/10 мин. Из них 17 марок производятся в автоклавных реакторах с перемешивающим устройством, остальные - в трубчатых реакторах. Помимо базовых марок выпускаются также композихцш полиэтилена, содержащие добавки термо- и светостабилизаторы, красители, наполнители и многие другие, которые придают полиэтилену различные специфические свойства, позволяющие существенно расширить области его применения [149]. ПЭВД для изготовления кабельной изоляции выпускается по ГОСТ 16336-77. Он представляет собой преимущественно композиции полиэтилена с термо- и светостабилизаторами. Естественно, к этим композициям предъявляются повышенные требования по электроизоляционным свойствам. [c.168]

    Разработаны полимерцементы на основе эпоксидно-диановых смол (ЭД-20, ЭД-16, Э-40, ДЭГ-1 и др.) с добавкой в качестве модификатора полиэфиров (МГФ-9 — продукт поликонденсации метакриловой кислоты, фталевого ангидрида и триэтиленгликоля) или жидких тиоколов (полисульфидные олигомеры) и в качестве отвердителей полиэтилен-полиамина или аминофенольного отвердителя АФ-2 (табл. 14). Дл улучшения физико-механических свойств, достижения необходимой вязкости, изменения коэффициента температурного расширения и уменьшения усадки при отверждении в полимерцементы на основе эпоксидных смол вводят кварцевый песок, кварц молотый, тальк, портландцемент, графит, аэросил, маршалит. В ряде случаев наполнитель пропитьшают растворами КОС (алкилалкоксисиланов, силазанов). [c.104]

    Вопрос о структуре некристаллических областей, которые определяют перенос газов и жидкостей в полукристаллических полимерах, рассматривался в работе За основную структурную характеристику таких областей была принята степень напряженности сегментов полимерных цепей. Предполагается, что полимерная цепь может проходить последовательно через кристаллические и некристаллические области, причем кристаллические области играют роль сшивок или частиц наполнителя в аморфном материале, вследствие чего участки между ними находятся в напряженном -состоянии. Активность растворителя, сорбированного такими напряженными областями, отличается от активности растворителя в ненапряженных областях. За характеристику степени напряженности сегментов была - взяга величина V — соотношение наблюдаемой активности к активности в гипотетическом состоянии полимера, в котором отсутствует влияние кристаллитов и сшивок. Значение V может быть вычислено, исходя из степени кристалличности, числа эффективных эластических элементов в цепях и других параметров. В работе установлено на примере линейного и разветвленного полиэтиленов, подвергнутых различной термической обработке, что значение определяется в первую очередь температурой, а не степенью кристалличности. [c.144]

    Антиокислители в виде полиоксиароматических соединений способны адсорбироваться на тонкопористом силикагеле такого типа, который используется в качестве наполнителя резин, и могут диспергироваться в полиэтилене. Оказывается, подобные антиокислители имеют столь же хорошие качества, как и углеродная сажа, но получаемая полиэтиленовая пленка-в данном случае становится прозрачной [649]. [c.830]

    Короче говоря, кристаллиты в полиэтилене и подобных ему гибкоцепных полимерах с высокими степенями кристалличности играют роль активного наполнителя [230], реально и мнимо смещающего области релаксационных состояний. Нами рассматривался простейший способ приготовления термоэласто-пласта [231] берется относительно легкоплавкий наполнитель, который при плавлении превращается в пластификатор, а это само по себе может перевести полимер в каучукоподобное или текучее состояние. Примерно такая же ситуация, но без превращения кристаллитов в пластификатор, имеет место и выше Гпл в очень высокомолекулярных гибкоцепных полимерах с высокой степенью кристалличности. [c.323]

    Обычно применяется не чистый полиизобутилен, который отличается повышенной хладотекучестью, а его композиции с наполнителями и другими полимерами. Так, смесь полиизобутилена с полиэтиленом используется в качестве электроизоляции для подводных и ультравьтсокочастотных кабелей и проводов. Листы из полиизобутиленовых композиций, наполненных асбестом и порошкообразными наполнителями (например, тальком), применяются для футеровки химической аппаратуры. Полиизобутилен - используется также как прокладочный материал и в виде пленочных покрытий. Полиизобутиленовые шланги служат в качестве кислотопроводов. В строительстве находят применение полиизобутиленовые гидроизоляционные прокладки. [c.88]

    Соляная кислота быстро разрушает болылинство металлов, поэтому выбору материалов для изготовления аппаратуры должно уделяться большое внимание. Для работы с соляной кислотой пригодны специальные сплавы, такие как дюрихлор, хлориметы и хастеллои. Чистый тантал не корродирует под действием соляной кислоты при любых ее концентрациях и температуре примерно до 177 С. Из неметаллических материалов можно применять кислотоупорные кирпич, керамику и фарфор, стекло, эмалированную сталь, каучук (нат ральный н синтетический для работы в условиях низких температур), пластмассы (полихлорвинил, полиэтилен, полистирол, фенопласты с наполнителем и фтороуглеводороды), а также различные графиты и угли. Уголь и графит широко применяются в производстве труб для влажного и сухого НС1 при температурах до 400° С. Карбейт — материал на основе угля или графита, пропитанных смолой, — широко используется для изготовления тсплообл1еп1[ого оборудования. [c.137]

    Эффективно также добавлять в смесь низкомолекулярный полиэтилен, в частности полиэтилен АС в количествах до 10%, что способствует равномерному распределению наполнителей и быстрому извлечению изделий из прессформы. Такие изделия хорошо сохраняют размеры и имеют блестящую поверхность. Аналогичные результаты достигнуты при использовании хлорсульфированного полиэтилена или добавки к латексу эмульгированного полиэтилена. [c.63]


Смотреть страницы где упоминается термин Полиэтилен наполнители: [c.206]    [c.196]    [c.81]    [c.581]    [c.7]    [c.98]    [c.470]    [c.335]    [c.404]    [c.505]    [c.816]    [c.220]   
Основы переработки пластмасс (1985) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2025 chem21.info Реклама на сайте