Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение водорода адсорбцией

    Таким образом, эффекты разделения низкотемпературной адсорбции в ряду орто-пара- и изотопических модификаций водорода являются квантовомеханическими. [c.65]

    Состав исходной смеси, легкой и тяжелой фракций при разделении непрерывной адсорбцией газообразной смеси хлористого водорода, метана, водорода и азота (объемн. %) [c.304]


    Неон получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. Разделение гелия и неона осуществляется за счет адсорбции или конденсации. Адсорбционный метод основан на способности неона в отличие от гелия адсорбироваться активированным углем, охлаждаемым жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси жидким водородом. [c.495]

    Синтетические цеолиты, получившие название молекулярных сит, обладают интересными структурными особенностями и специфическими свойствами. Одним из наиболее замечательных свойств цеолитов является их способность к избирательной адсорбции. Они иред-ставляют собой новое эффективное средство для осушки, очистки и разделения углеводородных и других смесей (газообразных и жидких) с целью получения чистых и сверхчистых веществ. Цеолиты применяют для извлечения из газовой смеси непредельных углеводородов (этилена), для очистки этилена от примесей ацетилена и двуокиси углерода, для очистки изопентана от примесей к-пентана, для разделения азеотропных смесей (метилового спирта и ацетона, сероуглерода и ацетона) и смесей, содержащих неорганические вещества (сероводород, аммиак, хлористый водород) и т. д. Они используются также для повышения антидетонационных свойств бензинов нутем избирательной адсорбции из них нормальных парафиновых углеводородов, а также для выделения ароматических углеводородов из смесей углеводородов с близкими физико-химическими константами, например извлечение бензола из смеси его с циклогексаном. В качестве осушителей цеолиты являются незаменимыми при наземном транспортировании газов в условиях севера и особенно при осушке трансформаторных масел. [c.12]

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]


    В последнее время большое внимание начали уделять выделению водорода из водородсодержащих газов путем низкотемпературного фракционирования, адсорбции на молекулярных ситах, абсорбции жидкими углеводородами и диффузионного разделения. Развитие [c.107]

    Адсорбция на молекулярных ситах. Этот метод широко используется для выделения индивидуальных углеводородов и разделения газовых смесей. Его применяют и с целью выделения водорода из газов, содержащих углеводороды С — С5, окись и двуокись углерода, сероводород и пары воды. Ниже показана температура адсорбции и типы молекулярных сит при разделении различных газов [42]  [c.109]

    Нефтезаводские газы, подлежащие разделению, представляют собой смесь углеводородов с водородом. Основные физические константы водорода и газообразных углеводородов приведены в табл. 12. Водород из этих газов вьщеляют методами глубокого охлаждения, абсорбцией, адсорбцией, диффузией через мембраны с избирательной проницаемостью для водорода. Метод глубокого охлаждения нашел промышленное применение для выделения Нз из водородсодержащих газов. Для получения водорода высокой степени чистоты используют метод короткоцикловой адсорбции на цеолитах. Водород очень высокой степени чистоты в небольших количествах получают диффузией через мембраны из сплавов палладия, проницаемых для водорода, но непроницаемых для других газов и паров. Разрабатываются и полимерные мембраны, обладающие аналогичными свойствами, Метод абсорбции углеводородами с последующей ректификацией, особенно при пониженной температуре, может быть также использован для концентрирования водорода. Этот процесс имеет место в системах гидроочистки (см, стр, 20). [c.42]

    В нефтегазоперерабатывающей и нефтехимической промышленности адсорбция применяется для отбензинивания природных и попутных углеводородных газов, при разделении газов нефтепереработки с целью получения водорода и этилена, для осушки газов и жидкостей, выделения низкомолекулярных ароматических углеводородов (бензола, толуола, ксилолов) из бензиновых фракций, для очистки масел, при очистке сточных вод с применением пылевидного активированного угля и т.п. [c.274]

    На первый взгляд может показаться, что атом водорода, не имеющий собственного дипольного момента, не должен давать никакого вклада в скачок потенциала. Однако это не так, поскольку в неоднородном силовом поле у поверхности могут происходить сильная поляризация адсорбированных атомов и образование наведенных диполей, т. е. пространственное разделение зарядов и соответствующее возникновение скачка потенциала. Кроме того, величина X частично обусловлена вытеснением с поверхности диполей воды при адсорбции атомов водорода. [c.78]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]

    Явление адсорбции обратимо. Увеличение температуры сорбента и газа, снижение давления газа, введение в систему малоактивного газа (водорода, аргона, гелия, азота, двуокиси углерода, воздуха) — все это способствует уменьшению концентрации хорошо адсорбирующегося компонента газа на поверхности адсорбента, т. е. порождает десорбцию. Многократное осуществление обратимого процесса сорбция — десорбция в одном аппарате и позволяет проводить разделение газовых смесей на отдельные компоненты даже в тех случаях, когда они близки по своим химическим и физическим свойствам. [c.46]


    За последние годы применение адсорбции на молекулярных ситах в области нефтепереработки шло по пути разработки запатентованных процессов разделения многочисленными фирмами. Назначение этих процессов в основном сводится к двум операциям фракционирования а) для удаления или извлечения н-алканов —С20 и б) для очистки водорода, содержащегося в различных нефтезаводских фракциях, с получением продукта чистотой 90—99,9% и выше. Это связано с неуклонным ростом потребности в новых источниках водорода и новых методах очистки имеющегося водорода для современных процессов нефтепереработки. [c.213]

    Независимо от намечаемого использования водорода, будет ли это прямое восстановление железных руд, синтез аммиака, метанола, гидрирование нефтяных фракций или производство топлив высокой теплотворности, для решения вопроса об экономике процесса необходимо предварительно выбрать оптимальный способ получения водорода. В будущем значительные усилия должны быть затрачены на разработку еще более дешевых источников получения этого ценного сырья. Для этого потребуется детальный анализ возможных методов разделения газовых смесей как абсорбция, адсорбция, диффузия, ректификация, связывание в виде комплексных соединений или при помощи химических реакций. [c.168]

    Три главных процесса повышения качества водорода на НПЗ - это адсорбция со сбросом давления при десорбции, избирательная проницаемость с использованием полимерных мембран и низкотемпературное разделение. Каждый из этих процессов основан на отличающихся принципах разделения, и поэтому характеристики процессов в значительной мере различаются. Все эти процессы помогают получать водород качества, необходимого для конкретного случая применения и требуемых продуктов. [c.483]

    При необходимости разделения потока, содержащего водород, на многочисленные продуктовые потоки, выбор падает обычно на низкотемпературные процессы разделения или некоторые сочетания низкотемпературных процессов и адсорбции со сбросом давления. В зависимости от сложности проекта, многочисленные продуктовые потоки могут быть получены при сравнительно высоких чистоте и степени извлечения. [c.491]

    Дпя выяснения свойств адсорбированного водорода проведено исследование адсорбции его на цеолитах хроматографическим методом [81]. Ранее адсорбцию водорода на цеолитах изучали при пониженных температурах с целью определения возможности адсорбционного разделения изомеров и изотопов водорода [82-90]. В этих работах было показано, что теплота адсорбции водорода на цеолитах составляет 8 10,5 кДж/моль, причем она несколько отличается для различных изомеров и изотопов, что позволяет осуществлять их разделение. [c.53]

    Для проведения классической хроматографии по методу Цвета активированный уголь мало пригоден, так как при этом нельзя следить за передвижением адсорбированных полос. Другой недостаток активированного угля состоит в том, что при его использовании сравнительно редко удается достигнуть достаточно хорошего разделения веществ, так как процесс адсорбции на угле выражается изотермой типа изотермы Фрейндлиха (см. стр. 323). Отрицательным качеством активированного угля является также то, что адсорбция на нем зачастую необратима. Наконец, многие органические вещества легко окисляются кислородом, который активированный уголь поглотил из воздуха. Это окисление особенно легко протекает в том случае, когда оно катализируется следами тяжелых металлов. Каталитическое действие последних можно устранить обработкой угля небольшим количеством цианистого водорода. Окисления кислородом, адсорбированным на поверхности активированного угля, можно избежать путем предварительного нагрева активированного угля в инертной атмосфере и удаления выделяющихся при этом газов. Обработанный таким образом уголь следует предохранять от контакта с воздухом, т. е. при работе с ним все операции необходимо проводить в инертной атмосфере (азот, двуокись углерода и т. п.). [c.349]

    Газ с ВЫСОКИМ содержанием гелия (95% или более) сначала подвергают химической очистке от примесей кислорода, водорода, двуокиси углерода, водяных паров и азота . Для этого газ последовательно пропускают над нагретой медью и окисью меди (при 500— 600 °С) и далее через раствор едкого кали, твердое едкое кали, пятиокись фосфора и металлический кальций, нагретый до 400—500 °С. Этот процесс в случае необходимости повторяют или делают замкнутым, давая газу циркулировать через систему очистки. Остаточный газ подвергают разделению методом адсорбции прп температуре жидкого воздуха или жидкого азота. В качестве сорбентов используют активированный уголь и хабазит. Адсорбцию газа повторяют до тех пор, пока опектросконичеакое исследование газа н.е покажет наличие одного гелия. - [c.293]

    Ю. п. Благой, Б. Н. Зимогляд, Г. Г. Жунь (Физико-технический институт низких температур АН УССР, Харьков). В объемных фазах эффекты, обусловленные различиями свойств орто-пара-модификаций изотопов водорода (за исключением некоторых известных тепловых, магнитных и оптических явлений), даже при весьма низких температурах малы и ими можно пренебречь. Однако было показано [1—9], что при низкотемпературной адсорбции на поверхности некоторых твердых тел происходит разделение водорода и его изотопов на орто-пара-модификации. [c.62]

    Неочищенный экстракт из С. pasteurianum может быть разделен путем адсорбции на геле фосфата кальция на две системы — систему, активирующую азот, и систему, поставляющую атомы водорода. Каждая из этих системв отдель- [c.596]

    Дейтерий (тяжелый водород) и тяжелая вода . Изотоп водорода № значительно отличается по своим свойствам от обычного водорода Поэтому, его до известной степени можно рассматривать как новый элемент и снабдить особым названием. По предложению американских химиков его назвали дейтерием и обозначают буквой D. Наряду с этим часто называют <его тяжелым водородом . Открыт он был, как упоминалось в 19, сначала спетроскопическим путем, после чего был концентрирован в обычном водороде (где его содержание составляет величину порядка 0,02 /о) фракционированием жидкого водорода это первоначально дало обогащение лишь в 5 раз (Ю р и, 1932). Вскоре после этого была получена тяжелая вода DaO, сначала в виде слабого концентрата, а затем и в чистом виде (см. ниже). Она обычно служит источником дейтерия. Разделение изотопов водорода может быть достигнуто дробной диффузией через пористые перегородки, палладий и пр. Основано оно на различии в скоростях диффузии, которое определяется молекулярными весами. В согласии с теорией эти скорости для обоих изотопов обратно пр( порциональны корням квадратным из молекулярных весов <(V 4 ]/2 = 2 1,4). Как выше указывалось, полное разделение этим путем было достигнуто Герцом (1934) после многократной дробной диффузии. Менее эффективно разделение дробной адсорбцией на угле и пр. Очень незначительного разделения удается достигнуть, пользуясь разной скоростью реакций с На и Da (например восстанов- [c.45]

    По оценке экономистов [3, 4], к 2025 г. потребность в водороде увеличится в 15—17 раз. Во многих производствах водород используют отнюдь не полностью, некоторая его часть в виде сбросных газов выводится из процессов и либо теряется совсем, либо используется в качестве низкокалорийного топлива. Рациональнее, конечно, извлекать водород из этих газов и возвращать его в процесс, однако применение для этих целей методов адсорбции, абсорбции, дистилляции, как правило, неэффективно. Более перспективным, из-за высокой водородопроницаемости и больших значений фактора разделения (селективности) по водороду в металлах и пол имерных материалах, представляется мембранный метод разделения. [c.271]

Таблица 8.7. Сравнение относительных затрат на мембранное разделение и короткоцикловую безнагревную адсорбцию продувочных газов нефтепереработки [производительность — 8200 м /ч концентрация водорода в газе —72% (об.)] Таблица 8.7. <a href="/info/1477760">Сравнение относительных</a> затрат на <a href="/info/817217">мембранное разделение</a> и короткоцикловую безнагревную адсорбцию <a href="/info/158641">продувочных газов</a> нефтепереработки [производительность — 8200 м /ч <a href="/info/14574">концентрация водорода</a> в газе —72% (об.)]
    В нефтяной промышленности процессы с псевдоожиженным слоем применяются и в ряде других областей в процессах контактного коксования, гидроформинга, обессеривания, адсорбционного разделения углеводородов и т. д. Кроме того, техника псевдоожиженного слоя применяется и в других технологических процессах — в черной металлургии, химической промышленности (например, при производстве чистой окиси хрома из хромистых руд, при коксовании углей, выделении кислорода из воздуха путем адсорбции кислорода в псевдоожиженном слое манганитом кальция, плюмбитом кальция или окисью маоганца при производстве сероуглерода из пылевидного угля и паров серы, в производстве водорода при взаимодействии закиси железа с водяным паром в реакторе с последующей регенерацией окиси железа и т. д.). [c.8]

    В промышленности адсорбцию применяют для отбензииивания попутных и природных углеводородных газов, при разделении газов нефтепереработки для получения водорода и этилена, осушки газов и жидкостей, выделения низкомолекулярных ароматических углеводородов из бензиновых франкций, для очистки масел н т. п. Явление адсорбции используется в хроматографии, в противогазах и т. д. [c.315]

    Выявление характера влияния Наде на скорость хемосорбции органических веществ в значительной мере осложняется эффектом вытеснения Наде хемосорбирующимися органическими частицами. Так, в случае адсорбции вещества при некотором постоянном Ег, отвечающем области потенциалов адсорбции водорода, происходит значительное уменьшение количества Наде на электроде, т. е. адсорбция органических частиц и на местах, предварительно занятых Наде. В результзте на токи хемосорбции органического вещества накладываются токи ионизации вытесненного Наде и разделение этих токов требует использования специальных электрохимических методик. [c.112]

    Методом ниэкотампературной адсорбции на силикагеле проведено разделение изотопов водорода. С помощью ионообменных смол получен тяжелый изотоп азота (содержание около 90%). [c.78]

    При адсорбции активированным углем марки АГ-2 концентрация этилена повышается с 5—6% в сырьевом газе до 99,7% в получаемой этиленовой фракции. Глубина извлечения этилена около 99,6%, содержание его в сухом газе около 0,02% [30]. Гиперсорбер, являющийся комбинированным адсорбером-десорбером, представляет колонну высотой 2Ь м ж диаметром 1,А.м. Гиперсорбер выделяет ацетилен из продуктов окислительного крекинга метана из сырья, содержащего 9,2% СгН , был получен 82,8%-ный концентрат в сухом газе оставалось всего 0,1% С На [5]. Однако адсорбционное выделение ацетилена осложняется трудностью отпарки его без значительной полимеризации [50]. Кельцев и Халиф на 97% извлекали Сз и более тяжелые компоненты из тощего саратовского газа при давлении 5—10 ат [51 ]. Возможность выделения водорода 99—99,5%-ной чистоты из метано-водородной и более тяжелых по составу смесей экспериментально показана Потоловским, Спектор и Каминером. Выход На составлял 96% от возможного [52]. Гиперсорбционное разделение легких отходящих газов, в которых этилен являлся самым тяжелым компонентом, мало изменяло активность угля и позволяло обходиться реактивацией его в мягких условиях. [c.179]

    В результате специфической адсорбции ионов водорода возпикает разделение заря/юв и межфаэный скачок потенциала на каждой из поверхностей мембраны. Через слой <ухого стекла ток переносят ионы натрия. Механизм отклика стеклянного электрода описьшается так называемой моделью мембраны с фикофованным зарядом. [c.401]

    В дальнейшем немецкие инженеры отказались от огромных скоростей в адсорбционной зоне и осуществили на заводах Борзига процесс осушки сжатого воздуха и водорода силикагелем, который проходит через зону адсорбции противотоком газу. Регенерация осуществлялась в отдельном нагревателе с выносной топкой. Схема силикагелевой установки непрерывного действия описана Касаткиным [3]. Процесс разделения газовых смесей в движущемся слое адсорбента, разработанный фирмой Лурги, был назван немецкими инженерами ректисорбцией [4]. [c.262]


Смотреть страницы где упоминается термин Разделение водорода адсорбцией: [c.209]    [c.295]    [c.60]    [c.62]    [c.63]    [c.60]    [c.62]    [c.63]    [c.96]    [c.6]    [c.331]    [c.181]    [c.492]    [c.476]   
Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция водорода

Разделение водорода



© 2025 chem21.info Реклама на сайте