Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой эффект и отвод тепла реакции

    По тепловому эффекту различают реакции эндотермические, идущие с поглощением тепла, и экзотермические, протекающие с выделением тепла. Так, реакции крекинга, пиролиза, каталитического риформинга являются эндотермическими, а гидрогенизации, алкилирования, полимеризации и др. — экзотермическими. Это требует и соответствующего конструктивного оформления аппарата, чтобы обеспечить подвод тепла в случае эндотермической реакции и отвод тепла в случае экзотермической реакции. [c.372]


    Как уже отмечалось, тепловой эффект реакции полимеризации составляет 96,37 кДж/моль (23 ккал/моль). При недостаточном теплоотводе температура процесса очень быстро может повыситься до опасных пределов. Однако отвод тепла реакции через теплообменную поверхность реактора невозможен, так как на его стенках образуются полимерные отложения. Поэтому прибегают к циркуляции этилена (парогазовой смеси этилена с растворителем). Тепло при этом отводится за счет испарения растворителя и нагрева рециркулирующей парогазовой смеси (ПГС). [c.114]

    Процесс является экзотермическим и термодинамически неустойчивым. Тепловой эффект реакции полимеризации составляет 96,37 кДж/моль (23 ккал/моль) превращенного этилена. Поэтому при недостаточном отводе тепла может произойти взрывчатое разложение этилена. [c.104]

    Интересно отметить, что при слабом внутридиффузионном торможении процесса и сильном сопротивлении отводу тепла реакции (т. е. малом к ) и больших значениях энергии активации Е и теплоты реакции —Д Н должны наблюдаться гораздо большие скорости реакции, чем при других условиях. Это объясняется тем, что тепло реакции запирается внутри частицы, повышая там температуру и таким образом сильно увеличивая скорость реакции Такой эффект [c.144]

    Сопоставляя это значение с приведенным в приложении 3, не следует забывать, что записанная выше реакция включает газообразный иод, а не твердый, как в приложении 3.) Если понизить температуру, при которой проводится эта реакция, равновесие сместится в сторону того процесса, который сопровождается выделением тепла, т.е. в сторону прямой реакции. И наоборот, если понизить температуру, создадутся более благоприятные условия для протекания обратной реакции с образованием Н2 и 12- Равновесие смещается в такую сторону, чтобы в какой-то мере компенсировать эффект поступления тепла извне (повышение температуры) либо эффект его отвода наружу (понижение температуры). [c.190]

    При проведении реакций со значительным тепловым эффектом обычно приходится применять аппараты с отводом тепла непосредственно из зоны реакции. В этом случае реактор охлаждается или нагревается с помощью специального теплоносителя. В качестве последнего можно применять также и реагирующую смесь. [c.262]

    Протекание реакции возможно лишь на определенном температурном уровне и в определенном интервале температур, поэтому понятно, что в процессах с подводом или отводом тепла в ходе реакции необходимо учитывать тепловой эффект реакции. [c.113]

    В сложных реакциях выход целевого продукта определяется не только температурой (или интервалом температур), но и другими переменными, такими, как время реакции (или время пребывания) и тип реактора. Если побочные реакции сопровождаются значительными тепловыми эффектами, важно учесть характер подачи или отвода тепла. [c.143]


    Тепловой баланс составляют.обычно для каждой ступени реактора по данным материального баланса и известным значениям тепловых эффектов реакций с учетом подвода и отвода тепла для поддержания оптимального режима процесса,. проходящего в реакторе. При расчете тепловых балансов также целесообразно составить диаграмму тепловых потоков для каждой ступени реактора. [c.255]

    Для получения кинетических. данных наиболее простой путь — осуществление изотермической р аботы интегральных конверторов, так как это ограничивает число переменных и облегчает интегрирование. Однако на практике изотермическая работа редко осуществляется, особенно для реакций с высокими тепловыми эффектами,вследствие ограничений в отводе тепла. Эти ограничения имеют большое значение, потому что плохой контроль за потоком тепла, приводящий к небольшим температурным градиентам в слое, может вызвать очень сильный эффект, поскольку скорость реакции экспоненциально зависит от температуры. При исследовании экзотермических реакций обычно применяют адиабатические трубные реакторы. Система температурного режима осуществляется таким образом, чтобы предотвратить утечку тепла через стенки реактора. Следовательно, профиль температур развивается вдоль длины реактора, размеры последнего зависят от теплоты реакции, теплоемкости реакционной среды и кинетики реакции. Полномасштабные заводские конверторы вследствие низкого соотношения поверхности и объема обычно работают адиабатически, и поэтому адиабатические- конверторы небольшого размера могут быть полезны для испытания на длительность пробега или для моделирования промышленной производительности. Эти конверторы могут работать либо на уровне полупромышленного масштаба, либо как пилотные установки. Адиабатические реакторы в настоящее время применяются для моделирования полномасштабных промышленных условий таких реакций, как высокотемпературная и низкотемпературная конверсия окиси углерода, реакция метанирования и синтез аммиака. [c.56]

    Проблемы не являются полностью разделенными. Для решения каждой из них требуется знание кинетики и термодинамики происходящих реакций и умение рассчитать поведение данной массы или объема катализатора при заданных рабочих условиях. Именно на этом этапе преимущества цифровых вычислительных машин (ЦВМ) становятся очевидными. Кинетика каталитических реакций редко может быть представлена настолько простым уравнением скорости, чтобы его можно было проинтегрировать аналитически, а кроме того, обычно добавляются трудности, вызванные тепловыми эффектами реакций или применяемым способом отвода тепла. Итак, расчет работы слоя катализатора требует, как правило, численного интегрирования системы дифференциальных уравнений — утомительная задача для, исследователя и легко выполнимая с помощью ЦВМ. По этой-то причине программы расчета реакторов были среди первых программ, составленных в середине 50-х годов, когда быстродействующие ЦВМ стали коммерчески доступными и начали все более широко применяться. [c.174]

    В термодинамическом отношении работа реакторов может протекать в изотермических условиях, т.е. когда в любой части аппарата температура одинакова. Такие условия обеспечиваются в реакторах, работающих в режимах, близких к режиму идеального смешения. В зависимости от знака теплового эффекта реакции при изотермическом режиме обеспечивается равномерный подвод или отвод тепла. [c.622]

    Возможность получения больших объемов является основной причиной частого использования этих колонн как аппаратов периодического действия. Но крупногабаритные барботажные колонны (больших диаметров) нецелесообразно применять для проведения реакций с большим тепловым эффектом. При конвективном отводе тепла через стенки, заключенные в рубашки, удельная поверхность теплообмена (отнесенная к объему колонн) уменьшается с увеличением объема колонн, не обеспечивая необходимого съема тепла. Кроме того, по сечению такой колонны могут возникать градиенты температур, недопустимые по условиям реакции. Размещение же внутри колонны большого количества дополнительных теплообменных элементов усложняет конструкцию аппарата. Способ отвода тепла за счет испарения части жидкости упрощает конструкцию самой колонны, но требует установки выносных теплообменных устройств. В целом агрегат получается конструктивно сложным, поскольку нарушается один из основных принципов проектирования химических реакторов, требующий размещения теплообмен- [c.8]

    В связи с большим тепловым эффектом реакции и ее большой скоростью при плохом отводе тепла может произойти разо- [c.117]


    В изотермических реакторах для сохранения постоянной температуры процесса необходимо подводить или отводить тепло соответственно тепловому эффекту реакции. Однако изотермические реакторы сравнительно редко используются в крупномасштабных производствах из-за высокой стоимости оборудования или теплообмена, что делает процесс неэкономичным. Поэтому промышленные реакторы чаще проектируются как адиабатические или политропические. [c.327]

    Для большинства рассматриваемых процессов характерно наличие теплового эффекта суммарных реакций. Этот тепловой эффект может быть отрицательным (и в этом случае для осуществления процесса необходимо затрачивать некоторое количество тепла) или положительным (когда происходит выделение тепла, и для сохранения изотермичности процесса необходимо отводить тепло из реакционной зоны).  [c.18]

    Наличие тепловых эффектов требует соответствующего конструктивного оформления реактора. При осуществлении термического или каталитического крекинга, риформинга и других процессов, сопровождающихся затратой тепла на реакцию, необходимо вносить тепло в реакционную зону. Это достигается либо подводом тепла через стенку труб нагревательно-реакционного змеевика печи, либо некоторым перегревом исходного сырья, либо применением твердого или газообразного теплоносителя. В процессах, протекающих с выделением тепла, для поддержания постоянной температуры необходим отвод тепла с этой целью применяют прямой ввод охлаждающего агента в реактор или создают там режим, способствующий теплоотводу (через теплоотводящую поверхность). Например, в реакторы гидрокрекинга во избежание подъема температуры вводят холодный водород, а при алкилиро-вании изобутана газообразными олефинами выделяющееся тепло отводят путем испарения части изобутана, находящегося в системе. Конкретные схемы реакционных устройств рассмотрены при описании соответствующих процессов. [c.21]

    Промышленные установки сернокислотного алкилировання. В нефтеперерабатывающей промышленности наиболее распространен процесс сернокислотного алкилировання. В зависимости от конструкции реактора и системы погоноразделения возможны несколько вариантов технологической схемы установки. Выше отмечалось, что реакция алкилировання протекает со значительным положительным тепловым эффектом. Выделяющееся тепло отводят двумя способами 1) охлаждением реакционной смеси через [c.290]

    Выявленный эффект связан с характером температурных полей в реакционном объеме. Если при малых радиусах, т.е. когда формируется плоский фронт реакции, эффект термостатирования связан с понижением температуры реакции на начальной стадии процесса, а по длине реакционной зоны она изменяется одинаково для обеих моделей (рис, 3.22), то при больших радиусах изменяется температурное поле во всем реакторе (рис. 3,23). Так, при реализации модели II имеет место образование зоны максимальных температур вблизи термостатируемой стенки, что существенно облегчает отвод тепла и сглаживает температурное поле. Это приводит к сужению ММР образующегося полимерного продукта. [c.158]

    Реакция алкилирования экзотермична, тепловой эффект реакции составляет примерно 960 кДж на 1 кг алкилата. Для создания изотермических условий необходимо отводить тепло из реакционной зоны. В зависимости от типа реактора теплоотвод осуществляется либо испаряющимся аммиаком или пропаном через трубчатую поверхность, либо непосредственно за счет испарения части циркулирующего изобутана. [c.24]

    Для увеличения выхода целевого продукта процесс ведут с рециркуляцией. Для подавления нежелательных реакций осуществляют циркуляцию водородсодержащего газа. Реакция изомеризации экзотермична, имеет незначительный тепловой эффект и не требует специальных мер по отводу тепла. [c.61]

    Поэтому, учитывая высокий тепловой эффект реакции, составляющий 19 ккал/моль при получении о-крезола и около 35 ккал/моль для 2,6-ксиленола, алкилирование целесообразно проводить в изотермическом реакторе. Отвод тепла осуществляют с помощью высокотемпературного теплоносителя, например эвтектической смеси дифенила и дифенилового эфира. [c.250]

    При проведении каталитического процесса в промышленной аппаратуре очень большое значение имеет правильное осуществление физических этапов процесса подвода реагентов к поверхности катализатора, их диффузии вглубь катализатора, отвода продуктов реак -ции и переноса тепла (особенно отвода тепла при экзотермической реакщ и). При медленном протекании этих физических этапов или при очень быстром течении каталитической реакции общая скорость всего технологического процесса может определяться физическими условиями. В этом случае увеличение активности катализатора не даст должного эффекта. Для интенсификации такого производства необходимо создать [c.75]

    Вдоль всех поверхности теплообмена обеспечивается интенсивный съем тепла при помощп горячего парового конденсата, циркулирующего через охлаждающие рубашки змеевика. Проведение процесса в змеевике, составленном из труб небольшого диаметра, обеспечивает большую удельную поверхность охлаждения. Для полимеризации этилена это особенно важно, поскольку тепловой эффект реакции может достигать 1000 ккал кг п своевременный и быстрый отвод тепла является решающим фактором для данного процесса. Часть избыточного тепла отводится также рециркулирующим этиленом. [c.277]

    Реакция хлорирования является сильно экзотермической. Можно принять, что при этой реакции замещения количество выделяющегося тепла составляет около 24 ккал1г-мол. Тепловой эффект реакции, разумеется, зависит от природы молекулы, в которой содержится замещаемый атом водорода. При хлорировании метана до хлористого метила выделяется около 23,9 ккал1г-мол, при хлорировании же этана до хлористого этила — около 26,7 ккал1г-мол. В технических расчетах обычно принимают, что на 1 кг хлора, вступившего в реакцию с углеводородом, выделяется около 360 ккал тепла. Для отвода таких больших [c.137]

    Имеющиеся в литературе данные о тепловом эффекте очень противоречивы — от 91 до 52 ккал на 1 кг дифенилолпропана. Поэтому авторы этой книги специально определяли тепловой эффект при конденсации фенола с ацетоном в присутствии концентрированной соляной кислоты. Он составил 98 ккал1кг. Выделяющееся тепло приходится отводить для поддержания заданной температуры реакции. [c.68]

    Изотермические процессы проходят при постоянной температуре во всем слое катализатора, т. е. температура в любой точке I = Более или менее полное приближение к изотермпчности слоя катализатора может быть достигнуто а) путем непрерывной компенсации теплового эффекта реакции подводом или отводом тепла б) при малом тепловом эффекте реакции, малой концентрации исходного, вещества или малой степени превращения, когда температура может до некоторой степени выравниваться за счет теплопроводности катализатора в) путем перемешивания газа и катализатора. В аппаратах кипящего слоя вследствие перемешивания температурный режим близок к изотермическому. Если в кипящем слое нет тенлообменных элементов, то, при хорошей изоляции, он является одновременно изотермическим и адиабатическим, в том смысле, что его температура может быть определена по формуле (111.12). [c.70]

    При промышленном окислении нафталина во фталевый ангидрид в неподвижном слое катализатора применяют катализатор в виде кусков размером 5—10 мм. Технологический процесс проводят под атмосферным давлением в горизонтальных или вертикальных трубчатых контактных аппаратах, трубки которых заполняют катализатором. Отвод тепла реакции осуществляют с помощью циркуляции нитрат-нитритного расплава через межтрубное пространство аппарата. При осуществлении процесса окисления нафталина во фталевый ангидрид необходимо принимать меры для максимального пои давления побочных реакций. Протекание последних приводит, с одной стороны, к материальным потерЯк, а с другой, — к возрастанию теплового эффекта, повышению температуры и вследствие этого уменьшению выхода целевого продукта. В этих условиях создается опасность взрыва.  [c.179]

    Полнтермнческие процессы, в которых тепловой эффект реакции частично компенсируется за счет подвода или Отвода тепла, осуществляются в трубчатых контактных аппаратах [2, 11, 13, 39, [c.51]

    Рассмотрим этот метод на примере процесса нитрования, производимого в првточном реакторе, снабжением рубашкой охлаждения. Баланс между тепловым эффектом реакции и отводом тепла в рубашку определяет температуру реакционной массы и время ее пребывания в реакторе. [c.180]

    Реакции гидрогенизации высокоэкзотермичны, а реакции расщепления эндотермичны. При гидрокрекинге отрицательный тепловой эффект реакций расщепления перекрывается положительным тепловым эффектом реакций гидрирования. Следовательно, в процессе гидрокрекинга обогащенного водородом сырья, где требуется меньшее насыщение водородом продуктов превращения, в отдельных случаях, возможно, почти не будет необходимости в отводе тепла. При гидрокрекинге вторичных остатков, которые бедны водородом, должны протекать преимущественно экзотермичные реакции и потребуется отвод тепла. [c.170]

    Для проведения алкилирования в присутствии НР используют несколько более высокие рабочие температуры - порядка 25-35°С. Повышение температуры становится возможным не только из-за отсутствия окислительных реакций. Пользуясь понятием "каталитическая активность можно сказать, что НР несколько менее активный катализатор, чем Н2504, и чтобы скорости реакции были сравнимы, необходимы более высокие температуры. Это не является недостатком метода, поскольку стоимость оборудования реактора охладительными устройствами для поглощения и отвода тепла (тепловой эффект реакции составляет 20 ккал/моль) можно снизить. Механизм процесса алкилирования изобутана бутиленами гораздо сложнее, чем это следует из реакций (4)-(6) /26-28/. Хотя [c.142]

    Чем выще тепловой эффект реакции, тем меньще должна быть высота слоя катализатора в каждой секции реактора и тем больше количество водородсодержашего газа, подаваемого для отвода тепла и регулирования температуры в реакционном объеме. [c.272]

    Как правило, отрицательный тепловой эффект побочных реакций расщепления перекрывается положительным тепловым эффектом гидрогенолиза. Суммарный тепловой эффект деметаллизации и гидрообессе-ривания мазута западно-сибирской нефти равен 250 кДж/кг, гудрона — около 315 кДж/кг. Таким образом, при гидрообессеривании возникает проблема отвода тепла, которая решается по-разному в зависимости от конструктивного оформления процесса (в стационарном или трехфазном кипящем слое катализатора) [304]. [c.298]

    Эффект, который можно получить при проведении процесса в форсированном режиме по теплосъему, проиллюстрируем следующим примером. Допустим, что экзотермическая реакция протекает в псевдоожиженном слое катализатора с отводом тепла из [c.194]

    При конструировании реактора необходимо предусмотреть не только хорошее контактирование олефинов с синтез-газом, но и эффективный отвод тепла для точного регулирования температуры. Это совершенно очевидно из-за высокой экзотермичности реакции ( 30 ООО ккiIл/кг-J ioл для этилена тепловой эффект реакции еще больше). Правда, оксореакция менее чувствительна к колебаниям температуры, чем родственная ей реакция Фишера-Тропша. Конструкция реактора зависит также от формы применяемого катализатора. [c.272]

    Единого мнения о роли в реакторах медной или никелевой насадки нет. Так, полагают, что медная сетка выполняет две функции во-первых, снижает тепловой эффект за счет эффективного отвода тепла реакции и устраняет возможные местные перегревы во-вторых, промотирует ее. Каталитические свойства можно было бы связать с образованием на поверхности металла фторида, который может сам выступать в роли фторирующего агента. Однако это, вероятно, не так, поскольку сами фториды этих металлов проявляют фторирующие свойства при значительно более высоких температурах. Вместе с тем присутствие на поверхности металлов таких фторидов, как AgF2, может при 250 °С и выше сказаться на скорости фторирования. Роль свободного фтора в этом случае состоит в регенерации фторида металла. Модифицирование медной насадки другими металлами не оказывает сколько-нибудь существенного влияния на протекание процесса фторирования. [c.221]

    В промышленности гидрирование ароматических углеводоро, используют в основном для получения циклогексана и тетрал (аналогичные технологические схемы могут быть использовг для получения метилциклогексана и других продуктов). Извес [40—44] несколько вариантов оформления процесса в зависимо от применяемого катализатора и схемы отвода тепла экзотер ческой реакции гидрирования. Тепловой эффект гидрирования б зола до циклогексана составляет 49 ккал/моль. [c.271]


Смотреть страницы где упоминается термин Тепловой эффект и отвод тепла реакции: [c.276]    [c.145]    [c.86]    [c.61]    [c.569]    [c.78]    [c.13]    [c.42]    [c.179]    [c.179]    [c.185]   
Смотреть главы в:

Химия и технология моноолефинов -> Тепловой эффект и отвод тепла реакции

Химия и технология моноолефинов -> Тепловой эффект и отвод тепла реакции




ПОИСК





Смотрите так же термины и статьи:

Отвод

Тепло, отвод

Тепловой эффект реакции

Эффект тепловой

Эффект тепловой, Тепловой эффект



© 2024 chem21.info Реклама на сайте