Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие возможности получения этилбензола

    Алкилирование ароматических углеводородов. Промышленное алкилирование ароматических соединений проводится в основном с целью получения этилбензола (полупродукта синтеза стирола), кумола полупродукта синтеза фенола) и алкилбензолов с длинными алкильными цепями (полупродуктов синтеза детергентов). При получении этилбензола в качестве катализатора применяется главным образом хлористый алюминий. Ежедневно таким способом производят несколько тысяч тонн этилбензола. Алкилирование с А1С1з проводят при приблизительно 4 атм, 120° С и соотношении бензола и этилена в сырье, равном 2,5. Этот способ алкилирования используется уже много лет и в настоящее время считается одним из наиболее эффективных методов получения этилбензола. Однако применение катализаторов Фриделя — Крафтса связано с рядом трудностей аппаратура должна изготавливаться из материала, устойчивого к коррозии, а применяемое сырье должно иметь достаточно высокую степень чистоты, иначе расход катализатора будет очень большим. Корродируют аппаратуру не столько сам катализатор А1С1з, сколько комплексы, которые образуются в ходе реакции в результате взаимодействия хлористого алюминия с компонентами сырья. Эти комплексы значительно более агрессивны и иногда единственным способом борьбы с коррозией является непрерывная замена корродированных узлов аппаратуры. Образованию таких комплексов, очевидно, способствуют содержащиеся в сырье примеси. Так, в частности, установлено, что одни и те же установки для производства кумола с фосфорнокислотным катализатором хорошо работают в одних местах и плохо в других. Хлористый алюминий частично растворяется в продуктах в 200 частях этилбензола растворяется одна часть А1С1з. В результате возникает еще одна проблема, связанная с нейтрализацией кислотных растворов, поскольку продукт алкилирования промывают водой, чтобы удалить растворенный в нем катализатор. Именно по этим причинам в настоящее время широко исследуется возможность проведения алкилирования на цеолитных катализаторах. [c.390]


    Ввиду того, что выходы в этих реакциях низкие, многие исследователи избегали их применения. Однако выходы алкилбензолов часто были не столь низкими, как можно было ожргдать на основании возможности одновременного образования трех продуктов конденсации, а также и другие побочных продуктов. Получение больших количеств алкилбензолов может быть объяснено тем, что реакция, вероятно, протекает с промежуточным образованием фенилнатрия, который легко реагирует е алифатическим галогенидом и труднее с ароматическим галогенидом. Все же реакция Вюрца-Фиттига может быть рекомендована для получения чистого алкилбензола, так как побочные продукты обычно легко отделяются. Например, при реакции бромистого этила и бромбензола образуются 7 -бутан и дифенил в качестве побочных продуктов, оба они очень легко отделяются от этилбензола перегонкой. Этот метод дает лучшие выходы при приготовлении к-алкилбензолов. В большом масштабе 151 реакция Вюрца-Фиттига была применена прп приготовлении н-де- [c.486]

    Другие возможности получения этилбензола [c.629]

    В гл. VI был рассмотрен процесс получения концентрированной этиленовой фракции из этилена коксового газа адсорбционным методом. Была показана возможность получения двух фракций, отличающихся составом 1) чистой этиленовой, содержащей 39—45% этилена и 0,2—0,4% пропилена, и 2) сырой этиленовой, содержащей 34—38% этилена и 3—4,5% пропилена и других гомологов. Примесями в этих фракциях являются кислород, ацетилен, окись углерода, сероорганические соединения и др. Обе фракции могут служить сырьем для получения этилбензола или смеси этил-и изопропилбензолов. [c.302]

    Реакция изомеризации — диспропорционирования отличается рядом практически весьма важных особенностей, с которыми необходимо предварительно ознакомиться для рассмотрения возможности промышленного осуществления процесса. Весьма важно отметить, что в реакциях этого типа в качестве сырья вероятнее всего будут использованы псевдокумол и ж-ксилол. Действительно, при производстве п- и о-ксилола и этилбензола высокой чистоты в виде остатка ароматической риформинг-фракции Сз будет получаться фракция, содержащая около 75% ж-ксилола. Эта фракция может использоваться как сырье для получения других изомерных ксилолов реакцией изомеризации или для получения ароматических углеводородов диспропорционированием. Аналогично псевдокумол высокой чистоты можно получать из фракции С,, риформинг-бензина путем выделения головных и хвостовых компонентов. Изомеризацией этой фракции можно получать смесь трех изомерных триметилбензолов, из которой мезитилен можно выделить перегонкой. Можно также осуществить диспропорционирование псевдокумола для получения фракции Сю, из которой кристаллизацией можно выделить дурол. Выше уже указывалось, что при помощи известных в настоящее время методов мезитилен нельзя выделить из ароматической фракции Сд риформинг-бензина. Хотя, как указывалось в патентной литературе [70—72], дурол можно выделить из риформинг-бензинов С кристаллизацией, суммарные ресурсы дурола, которые удастся получить из этого источника, недостаточны для крупнопромышленного применения. Помимо увеличения потенциальных ресурсов дурола при помощи процесса диспропорционирования, получаемая таким процессом фракция Сц, будет содержать значительно больше дурола, чем фракция Сщ риформинг-бензина, что дает заметные преимущества на последующих ступенях очистки. [c.331]


    На заводах синтетического этилового спирта, работающих сернокислотным способом, возможно использование этилена в виде этан-этиленовой фракции с относительно широким интервалом концентрации этилена (35—95%). После извлечения этилена серной кислотой этан возвращается на пиролиз. В этом случае применяется одна колонна с небольшим числом тарелок для отгонки этан-этиленовой фракции, а кубовый продукт, содержащий этан, пропан, пропилен и высшие, возвращается на пиролиз. При получении синтетического этилового спирта. методом прямой гидратации требуется применение фракции Сг с содержанием этилена 1не менее 95%об. В ряде других производств (алкилирова-ние бензола с целью получения этилбензола, прямое окисление в окись этилена, получение хлорпроизводных) достаточно иметь газ с 90—95% содержанием этилена. На полимеразицию под высоким давлением и другими методами направляется этилен с концентрацией 99,9%. Применение высококонцептрированного этилена, выделение которого требует значительных затрат, в ряде случаев выгодно с технологической точки зрения, т. к. облегчается освобождение от других примесей, являющихся ядами катализаторов, отпадает необходимость ректификации при рециркуляции непрореагировавшего этилена. [c.68]

    Известно, что отделение пропана от пропилена физическим путем трудно осуществить в рамках общей схемы разделения углеводородных газов. С другой стороны, основной процесс переработки пропилена —получение изонропилбензола возможно производить, исходя из пропилеп-пропановой фракции без предварительного выделения пропана. В связи с этим представляется целесообразным получение химической промышленностью от нефтезаводов не только низших углеводородов, но также и изонропилбензола (а в некоторых случаях и этилбензола). Это находится в соответствии с тем, что на современных нефтезаводах уже создана промышленность синтеза углеводородов (получение изооктана, изонропилбензола). Нефтяная промышленность и в дальнейшем должна специализироваться в этой области, увеличивая ассортимент выпускаемых углеводородов до масштабов удовлетворения потребности в них химической иромышленности. [c.41]

    В ходе этой реакции происходит миграция алкильной группы из молекулы одного ароматического соединения в молекулу другого углеводорода, например толуол образует бензол и ксилол. Реакция эта обратима. Насколько нам известно, некоторые компании серьезно изучали возможность промьш1ленного применения реакций такого типа, но мы не располагаем данными ни об одной действующей установке, кроме установки для получения этилбензола рециклизацией диэтилбензола. Эта реакция похожа как на описанные выше реакции алкилирования, так и на рассмотренные в гл. 3 реакции изомеризации алкил-ароматических углеводородов, поскольку во всех трех реакциях используются одни и те же катализаторы. В качестве катализаторов были исследованы HF - BF3, а также кислотные катализаторы, используемые при крекинге нефти (гл, 4). [c.149]

    Рассмотренная технологая характеризуется высокой эффективностью использования энергии. Подводимое тепло рекуперируется на 95 %, теплота реакции обеспечивает получение пара среднего давления, в дефлегматорах ректификационных колонн 7 п 8 генерируется пар низкого давления. Однако для повыйтения эффективности использования энергии еще есть резервы. Так, аппарат 11 при колонне 7 должен быть дефлегматором, позволяющим только частично конденсировать пар для получения флегмы продукт в паровой фазе следует сразу подавать в печь а в колонне 4 следует организовать полное отделение бензола, тогда отпадает необходимость в колонне 7. В ректификационной колонне 9 можно не конденсировать продукт, а направлять его в паровой фазе сразу в реактор. Возможны и другие варианты технологических схем получения этилбензола алкилированием бензола на цеолитных катализаторах (процесс фирмы Union ОН , процесс фирмы Mobih, США). Они отличаются возможностью использования вторичной энергии, регенерации катализатора и т. д. [c.295]

    Комплексы н-бутиллития и mpem-бутилата калия (1 1) нашли успешное применение в реакции металлирования бензола, толуола, трифенилметана и дифенилметана и других соединений. Выход соответствующих карбоновых кислот достигает 70—90% [7]. Отмечено комплексообразование фениллития ( без солей ) с тгерет-бутилатом калия в среде бензола и эфира (10 1), что сказывается в резком повышении реакционной способности фениллития. При насыш ении этого раствора этиленом (50 атм) й последуюш ем гидролизе получен этилбензол (25%), н-бутилбензол (1%) и более высокие теломеры и полимерные материалы (возможно, полиметилен) [7]. Без добавления mpem-бутилата калия эти реакции не идут. [c.181]

    ВНИИНЕФТЕХИМом впервые было показано, что применение каталитических количеств нафтената натрия (и других металлов постоянной валентности) обеспечивает возможность повышения скорости и селективности реакции окисления этилбензола кислородом воздуха. Этот факт учтен при разработке (ВНИИОЛЕФИН) процесса получения стирола и окиси пропилена (рис. 6.15). Реакция осуществляется при 140—155 °С в каскаде барботажных реакторов. Для приготовления катализатора применяется в микроколичествах едкий натр. Щелочь, вступая во взаимодействие с гидроперекисью этилбензола, образует соль гидроперекиси, хорошо растворимую в оксидате и являющуюся истинным катализатором процесса. В указанных условиях селективность окисления равна 85—88% при глубине окисления 10—12%. [c.195]


    Для того чтобы некоторая часть этилбензола могла прогид-рироваться в количествах, достаточных для получения промежуточного соединения, температура изомеризации не должна быть высокой. При этом для протекания реакции нет необходимости в полном гидрировании этилбензола. Оптимальное использование этилбензола или какого-либо другого ароматического углеводорода с более сложной боковой цепью возможно при двухстадийном процессе. Первая стадия осуществляется при давлении 12 атм, температуре 385°С, соотношении (мольном) водорода и сьфья, равном 10, среднечасовой скорости подачи жидкости /7, 28/. На этой стадии происходит частичное гидрирование. Вторую стадию проводят в тех же условиях, но в температурном интервале 430-500ОС в это время происходит дегидрирование. [c.38]

    Для проверки этого метода измерена интенсивность хемилюминесценции в реакции инициированного окисления этилбензола при 97°С. Пр 1 этой температуре инициатор, АИБН, распадается с большой скоростью (период полураспада11 мин.) и скорость инициирования непостоянна. В соответствии с выражением (У.4) интенсивность свечения падает во времени (рис. 65,7). В разные моменты времени после начала реакции в реакционный сосуд вводились добавки ингибитора 2,б-ди-трет.бутилфенола. Соответствующие кинетические кривые приведены на рис. 65. Измерение площадей, заключенных между полученными кривыми, дает возможность определить коэффициент б. Величина коэффициента о может быть найдена и другим независимым методом по известному значению скорости инициирования и измеряемой интенсивности свечения в отсутствие ингибитора. Сравнение полученных значений (измеренных в моль л-сек на 1 мм шкалы самописца), проведенное ниже, подтверждает возможность измерения скорости инициирования описанным методом  [c.144]

    Продолжая наши исследования низкотемпературного н идкофазного окисления в области нерекисных соединений (исследования, аналогичные тем, о которых мне уже приходилось докладывать на конференции в Институте нефти АН СССР 18 мая 1951 г.), носвяш енные в основном вопросам получения гидроперекиси изопронилбензола, ее свойствам и превращениям в эквимолекулярную смесь фенола и ацетона или получению из нее диметилфенилкарбинола, а также ряда некоторых других гидроперекисей (этилбензола, втор, бутилбензола, м- и п-изопропилбензолов, п-третичн. бутилизопропилбензола, дибензила, циклогексилбензола, дигидроперекиси м-диизопронилбензола), мы имели возможность познакомиться со следующими новыми перекисными соединениями. [c.362]

    При формилировании по методу Гаттермана— Коха различных гомологов бензола установлено, что в бензольное ядро вступает одна альдегидная группа, причем почти исключительно в параположение к алкильному радикалу. Что касается возможности применения рассматриваемой реакции к этилбензолу, то в литературе имеются противоречивые указания. Гаттерман и Кох в первом сообщении о своем методе упоминают о получении л-этилбензойного альдегида, но без уточнения условий проведения реакции. Брауну и Энгeлю также удалось получить п-этилбен-зойный альдегид по этому методу. Попытки ряда других исследователей не увенчались успехом (см., например, работу Клайна и Рейда о, Фурнье , а также указание Вейганда ). [c.280]

    Возможны и другие пути выделения эталеновой фракции из коксового газа с целью последующего синтеза этилбензола. Например, возможно осуществление процесса адсорбции этилена из коксового газа активированными углями с последующей десорбцией олефина в виде концентрированной этиленовой фракции. Процесс адсорбции из коксового газа этилена с переработкой его в этилбензол изучался А. И. Бродович, М. С. Золотницкой, П. К. Вершининым и др. [130] в лабораторных условиях при давлении 1—20 ат, а также на полупромышленной установке при давлении до 5 ат. В качестве адсорбента были испытаны угли марок АР-3 и АГ-2. В результате проведенных исследований предложена схема промышленной адсорбционной установки (рис. 24) для выделения из коксового газа этилена в виде 40— 45%-й этиленовой фракции и получения из нее этилбензола. [c.138]

    Цеолиты яв.тяются эффективными катализаторами алкили-рования ароматических соединений олефинами [41—48], спиртами [45, 46], галоидалкиламн [23, 46] ( табл. 6). В этих реакциях цеолитные и цеолитсодержащие катализаторы существенно превосходят аморфные алюмосиликаты по активности, селективности и стабильности. Нами разработаны новые катализаторы, на которых из бензола и этилена можно получать вторичный бутилбензол [49—51]. Причем возможны два варианта осуществления процесса с получением вторичного бутилбензо-ла (ВББ) и бутенов либо ВББ и этилбензола. На примере синтеза ВББ из бензола и этилена впервые показано, что полнфунк-циональными свойствами, т. е. способностью ускорять одновременно различные реакции или реакционные стадии (здесь — димеризацию этилена и алкилирование бензола олефинами), могут обладать однокомпонентные катализаторы — никелевые формы цеолитов тина фожазита. Полифункциональность этих цеолитов обусловлена наличием в них ионов N1 +, которые, с одной стороны, создают активные центры димеризации С2Н4, а с другой,— разлагая молекулы воды, генерируют протоны. [c.9]

    В СВЯЗИ с увеличением производства бензола для получения цикло-гексана, фенола, этилбензола и других продуктов анализ неуглеводородных примесей, присутствующих в исходном сырье— сыром бензоле коксохимического происхождения, приобретает важное значение. В значительной степени это относится к анализу сероуглерода и тиофена, содержание которых регламентируется ГОСТом. Преимущества хроматографического анализа перед существующими методами контроля заключаются в возможности непосредственого определения примесей в сыром бензоле и его фракциях [1,2]. При определении тиофена колориметрическим методом примеси непредельных соединений искажают создаваемую окраску, при использовании для этой цели полярографического метода искажения возникают в том случае, если имеются другие сернистые соединения. [c.96]


Смотреть страницы где упоминается термин Другие возможности получения этилбензола: [c.242]    [c.737]    [c.15]    [c.241]    [c.17]    [c.104]    [c.105]    [c.85]   
Смотреть главы в:

Химия и технология моноолефинов -> Другие возможности получения этилбензола




ПОИСК





Смотрите так же термины и статьи:

Этилбензол



© 2025 chem21.info Реклама на сайте