Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и свойства коллоидных растворов

    Время же коалесценции глобул воды в нефти во многом зависит от вязкости нефти. Большое противодействие коалесценции в этом случае оказывает наличие в нефти веществ, образующих на поверхности глобул адсорбционные слои, обладающие структурно-механическими свойствами. Эти вещества носят название эмульгаторов. Те из них, которые молекулярно растворены в углеводородах нефти, например смолы, образуют молекулярные слои на границе раздела фаз. Но обычно вместе с ними бывают растворены и другие кислородсодержащие вещества асфальтены, органические кислоты и т. д., придающие нефти свойства коллоидного раствора. Эти вещества более активны, чем смолы. Они подавляют адсорбцию последних и адсорбируются сами на границе раздела фаз нефть — вода, образуя коллоидно-адсорбционные слои, обладающие высокими структурно-механическими свойствами. Особенно прочные структуры образуют асфальтены. [c.92]


    Реологические свойства полимерных растворов во многом сходны с соответствующими свойствами коллоидных растворов. Они изложены в подразделах 3.12-3.14, посвященных структуре и реологии дисперсных систем. Здесь рассмотрены наиболее важные специфические вопросы реологии растворов полимеров и использованы при этом понятия и соотношения, введенные в упомянутых подразделах. [c.741]

    Исследователи обычно отмечают, что причина высокой вязкости силикатных растворов по своей природе отлична от растворов высокополимерных органических соединений. Способы определения средней молекулярной массы по величине характеристической вязкости не применимы к растворам щелочных силикатов. Концентрированные растворы с высоким силикатным модулем представляют собой системы, переходные к лиофильным коллоидам. При постоянном содержании щелочи (ЫагО) увеличение силикатного модуля системы ведет к возрастанию вязкости, но, пройдя через область неустойчивых состояний, где система склонна к гелеобразованию (4< <25), высокомодульные системы снова становятся подвижными, приобретая свойства коллоидного раствора с очень малой вязкостью. Айлер [2] придерживается мнения, что кремнеземные структуры, имеющие место в безводных стеклах, очень мало или вовсе не связаны с природой кремнезема в образующихся из них водных растворах. В современной технологии использования жидкого стекла [1] отмечается недостаточность стандартизации состава, т. е. концентрации и модуля Раствора для получения заданных технологических свойств. Это [c.47]

    Чрезвычайно большое значение процессы адсорбции имеют и для структуры и свойств коллоидных растворов. В золях коллоидные частицы вследствие их малых размеров обладают настолько большой суммарной поверхностью, что адсорбционные процессы развиваются на них особенно интенсивно. [c.379]

    Более подробное ознакомление со структурой и важнейшими свойствами коллоидных растворов удобнее провести раздельно с типично лиофильными и с типично лиофобными золями, с учетом существования и некоторых систем с промежуточными свойствами. [c.380]

    Растворы полимеров при течении обнаруживают ряд аномалий, природа которых легко может быть объяснена после того, как определены особенности механических свойств самих полимеров. Как известно, растворы полимеров обладают структурной вязкостью и не подчиняются закону вязкости Ньютона. Обычно эти аномалии пытаются объяснить возникновением структур в коллоидных растворах. Однако, хотя структурообразование безусловно существует в коллоидных системах, оно не является единственной причиной упомянутых аномалий. Очень часто, в случае растворов полимеров, эти эффекты вызваны проявлением релаксационных свойств полимерных. молекул в растворе. [c.88]


    Под влиянием повышенной температуры (для чистых белков начиная с 50—80°) происходит глубокое изменение структуры белка, коллоидный раствор разрушается, белок превращается в сгусток (свертывается) или в осадок и теряет способность снова переходить в раствор. Такой необратимый процесс резкого изменения свойств белка, связанный с изменением не только его физического состояния, но и химического строения, носит название денатурации и происходит не только при нагревании, но и при действии многих химических реагентов. Это свойство используется на практике, например, при выделении белков из растительного сырья нагреванием в кислой среде. [c.227]

    Объяснение этого явления может заключаться в том, что при малых скоростях фильтрации становится существенным силовое взаимодействие между твердым скелетом породы и фильтрующимся флюидом, которое может дать преобладающий вклад в фильтрационное сопротивление. При весьма малых скоростях потока сила вязкого трения пренебрежимо мала, тогда как сила межфазного взаимодействия остается при этом конечной величиной, поскольку она не зависит от скорости и определяется только свойствами контактирующих фаз. В результате такого взаимодействия нефть, содержащая поверхностно-активные компоненты, в присутствии пористого тела с развитой поверхностью образует устойчивые коллоидные растворы ( студнеобразные пленки, частично или полностью перекрывающие поры). Чтобы началось движение, нужно разрушить эту структуру, приложив некоторый перепад давления. 24 [c.24]

    Концентрирование асфальтенов на границе раздела нефть — порода может привести к тому, что в общем объеме нефти асфальтены будут находиться в истинном растворе, а в граничном слое — в виде коллоидного раствора. Концентрация асфальтенов, их химическая структура оказывают существенное влияние на физико-химические свойства граничного слоя и в первую очередь на его реологические свойства. [c.10]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]

    Частицы коллоидных размеров могут иметь различную внутреннюю структуру, что существенно сказывается как на методах получения коллоидных растворов, так и на их свойствах. Существуют следующие три типа внутренней структуры первичных частиц коллоидных размеров. [c.293]

    Внутренняя структура, а следовательно, и механические свойства коллоидных и дисперсных систем определяются взаимодействием частиц дисперсной фазы с молекулами дисперсионной среды и между собой. Изучению внутренней структуры и строения материалов посвящен раздел коллоидной химии, названный физико-химической механикой. Физико-химическая механика дисперсных систем изучает их реологические свойства в связи с внутренним строением и решает вопросы управления ими с целью получения новых материалов. Значение этого раздела коллоидной химии очень велико и с практической, и с теоретической точки зрения. Такие системы, как цементные растворы, растворы полимеров, глинистые суспензии, лаки, краски, пасты, бумажная масса, почвы, биологические системы, обладают определенной структурой и потому характеризуются особыми структурно-механическими свойствами. [c.427]


    Легкость растворения высокомолекулярных веществ и устойчивость их растворов связана с присутствием в их структуре большого количества так называемых лиофильных групп, т. е. групп, имеющих сродство к растворителя м. Это свойство послужило основой для деления коллоидных растворов на лиофильные и лиофобные. [c.173]

    Коллоидная химия. В учениях о коллоидах рассмотрены структура, свойства и поведение систем, включающих частицы относительно больших размеров, часто не взаимодействующих с окружающей средой (лиофобные коллоиды) или образующих растворы, близкие к молекулярным (растворы высокомолекулярных соединений). Коллоидная химия выделилась в самостоятельный крупный раздел физической химии благодаря бурному развитию в последние десятилетия этой области науки, ее больщой роли практически во всех процессах, связанных с жизнедеятельностью организмов, и во многих природных процессах. [c.7]

    Обычно пептизируемость коагулятов уменьшается со временем в результате развития точечных контактов между первичными частицами происходит упрочнение коагуляционных структур. Подобное самопроизвольное изменение свойств коллоидных растворов, коагулятов, студней и гелей называют старением коллоидов. Оно проявляется в агрегации частиц дисперсной фазы, в уменьшении их числа и степени их сольватации (в случае водных растворов — гидратации), а также в уменьшении поверхности раздела между фазами и адсорбционной способности. [c.313]

    ГЛАВА VIII. КОЛЛОИДНЫЕ РАСТВОРЫ 48. Структура и свойства коллоидных растворов [c.171]

    Основные исследования относятся к коллоидной химии. Разрабатывал (с 1898) методику получения коллоидных растворов и их ультрафильтрации. Сконструировал (1903) щелевой оптический ультрамикроскоп для наблюдения броуновского движения частиц коллоидных растворов. Создал (1913) иммерспонный ультрамикроскоп. Предложил классификацию коллоидных частиц по их видимости в ультрамикроскопе и по их взаимодействию с дисперсионной средой. Установил микрогетерогенную природу коллоидных растворов. С помощью ультрамикроскопии и других разработанных им методов исследовал свойства коллоидных растворов и их коагуляцию. Выдвинул (1911) теорию капиллярной конденсации пара в порах адсорбента. Изучал (с 1911) структуру гелей. Изобрел световой анализатор, мембранный (1918) и сверхтонкий (1922) фильтры. Синтезировал краситель пурпурный Кас-сиуса . Разработал способы получения цветного стекла (в том числе молочного ). Автор монографии Коллоидная химия (1912), переведенной на ряд языков, в том числе на русский (1933). [c.201]

    I тип — суспензоиды (или необратимые коллоиды, лиофобные коллоиды). Так называют коллоидные растворы металлов, нх оксидов, гидроксидов, сульфидов и других солей. Первичные частицы дисперсной фазы коллоидных растворов этнх веществ по своей внутренней структуре не отличаются от структуры соответствующего компактного вещества и имеют молекулярную или ионную кристаллическую решетку. Суспензоиды — типичные гетерогенные высокодисперсные системы, свойства которых определяются очень сильно развитой межфазовой поверхностью. От суспензий они отличаются более высокой дисперсностью. Суспензоидами их назвали потому, что, как и суспензии, они не могут длительно существовать в отсутствие стабилизатора дисперсности. Необратимыми их называют потому, что осадки, остающиеся при выпаривании таких коллоидных растворов, не образуют вновь золя при контакте с дисперсионной средой. Лиофобнымн (греч. лиос — жидкость, фобио — ненавижу) их назвали, предполагая, что особые свойства коллоидных растворов этого типа обусловлены очень слабым взаимодействием дисперсной фазы и дисперсионной среды. Концентрация лиофобных золей невелика, обычно меньше 0,1%. Вязкость таких золей незначительно отличается от вязкости дисперсионной среды. [c.312]

    Тиксотропия исследуется двумя методами измерением времени тиксотропного застудневания и определением механических свойств коллоидных растворов под нагрузкой и после снятия нагрузки. Первый метод, в простейшем виде, сводится к разжижению геля в пробирках путем встряхивания их и фиксации времени тиксотропного застудневания. В таком виде метод является качественным и для получения сравнимых данных требует соблюдения постоянных условий опыта. К тому, что отмечалось по этому поводу выше, следует добавить, что все пробирки необходи.мо встряхивать тщательно и по возможности одинаковым образом для полного или, по крайней мерс, одинакового разрушения структуры. Этот метод позволяет различать тиксотропию от тиксолабильности, так как в последнем случае не наблюдается вторичного застывания разжиженного геля. [c.218]

    С)т формы частиц дисперсной фазы зависят некоторые свойства коллоидных растворов. Так, коллоидные системы асимметрического строения способны образовать внутреннюю сетчатую структуру. На рис. 174 и 175 приведены полученные на электронном микроскопе снимки коллоидных частиц свежеприготовленного золя сульфида мышьяка и пятнокиси ванадия. Как видно из этих рисунков, частицы пятиолиси [c.407]

    Понятне мицелла-кристаллит, как оно введено здесь, имеет точно определенное значение только для структуры природной целлюлозы. Его пытались использовать также для объяснения свойств коллоидных растворов целлюлозы, в которых она всегда несколько деструктирована. Теперь, однако, несомненно, что кристаллиты природной целлюлозы не сохраняют свою связь в процессе растворения, а расщепляются на главновалентиые цепи, т. е. на макромолекулы. Этому не противоречит наблюдение, что в текущих коллоидных растворах коллоидные частицы могут аналогичным образом расположиться параллельно так, что при структурных исследованиях получают рентгенограмму волокна [283]. Такие группы параллельных частиц в растворе не имеют определенной неизменной величины и никак не могут быть сравнимы с кристаллитами природной целлкзлозы. Ни в коем случае нельзя смешивать употребленный здесь термин, ,мицелла с понятием [c.308]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    Явление агрегатной кристаллизации наблюдается в основном у высококипящих мелкокристалл ических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Как уже отмечалось выше, высококипящие высокомолекулярные парафины образуют при кристаллизации мелкую кристаллическую структуру. По величине образующиеся кристаллики парафина приближаются (особенно для многих тяжелых продуктов остаточного происхождения) к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кргисталликов парафина, характеризуются некоторыми свойствами, присущими коллоидным системам. Например они проявляют аномалию вязкости, способны к явлениям, аналогичным гелеобразованию, и др. К таким свойствам относится и способность микрокристаллической взвеси образовывать в определенных условиях агрегаты, как это происходит при коагуляции коллоидных растворов. Одна из причин такой агрегации — выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих соединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют и электростатические явления. [c.93]

    Некоторые исследователи уже давно допускали, что каменные угли имеют коллоидный характер. Ряд углехимиков придерживается этого мнения и в настоящее время. В качестве доказательств правильности этих взглядов они приводят высокую адсорбционную способность углей по отношению к некоторым жидкостям и парам, их способность набухать и образовывать коллоидные растворы (например, в пиридине), а также некоторые их физические и оптические свойства. Представление об углях как коллоидных системах приводит к признанию их мицеллярной структуры. [c.212]

    Стахина Л.Д., Савиных Ю.В. // Структура растворов и дисперсий свойства коллоидных систем и нефтяных растворов полимеров. - Новосибирск Наука, Сиб. отд. АН СССР, 1989. - С. 173-175. [c.204]

    Изучая реологические свойства коллоидных систем, можно определить характер образовавшихся в них структур. Значение рео- логических свойств коллоидных систем важно и с практической стороны. Такие важные системы, как почва, формовочные глины, цементный раствор, краски, лаки, Гтасты, характеризуются рядом особых структурно-механических свойств..  [c.314]

    Микрогетерогенные и ультрамикрогетерогенные дисперсные системы благодаря соизмеримости частиц дисперсной фазы с длиной световых волн обладают специфическими оптическими свойствами. Это позволяет использовать оптические методы исследования для изучения структуры и формы частичеи , скорости их перемещения, размеров и концентрации. Оптические методы широко используются в практике определения концентрации коллоидных растворов, эмульсий, аэрозолей. Оптические характеристики аэрозолей (туманы, тучи, пыль), степень мутности водоемов имеют большое значение для авиации, метеорологии, контроля загрязнения окружающей среды. [c.388]

    В свободнодисперсных системах частицы дисперсной фазы не связаны мелсду собой и способны независимо перемещаться в дисперсионной среде. Такие бесструктурные системы проявляют способность к вязкому течению и качественно ведут себя как чистая дисперсионная среда (жидкость или газ). Сюда относятся разбавленные эмульсии и суспензии, коллоидные растворы (золи). В связнодисперсных системах частицы дисперсной фазы образуют непрерывные пространственные сетки (структуры) они теряют способность к поступательному движению, сохраняя лишь способность к колебательному движению. К ним относятся гели, студни, концентрированные суспензии (пасты) и эмульсии, а также пены и порошки. Такие системы проявляют некоторые свойства твердых тел — способны сохранять форму при небольших нагрузках, обладают прочностью, часто упруги. Однако вследствие малой прочности связей между отдельными элементами сетки такие системы легко разрушаются — обратимо (приобретая способность течь) и необратимо (проявляя хрупкость). Существует также ряд переходных систем, получивших название структурированные жидкости . В структурированных жидкостях частицы дисперсной фазы склонны к сильному взаимодействию, но концентрация их недостаточна для создания единой пространственной сетки. Эти системы способны течь, имеют малый модуль упрз гости, но течение их не подчиняется законам течения идеальных жидкостей, а период релаксации велик и приближается к значениям, характерным для твердых тел- [c.429]

    Путем образования коагуляционных структур, возникающих под действием молекулярных (вандерваальсовых) сил сцепления коллоидных частичек, участвующих в интенсивном броуновском движении, и более крупных частичек, взвешенных в жидкой среде суспензии или коллоидного раствора. Такие структуры обладают сравнительно с кристаллизационными малой прочностью, пониженной остаточными тонкими прослойками жидкой среды в местах контакта между сцепляющимися твердыми частичками. Вместе с тем коагуляционные структуры обладают тиксотропными свойствами, т. е. способны к обратимому восстановлению после механического разрушения. [c.184]

    Образование структур в коллоидных системах и в растворах высокомолекулярных соединений является результатом сцепления частиц под влиянием действующих между ними сил (молекулярных или химических). Процесс образования структуры и свойства структурированных систем зависят от состояния и свойств поверхности частиц дисперсной фазы. Важную роль при этом играет неоднородность поверхности частиц, которая в одних случаях обусловлена анизоднаметрической формой, в других случаях — химическим строением, т. е. наличием в составе частиц функциональных групп с различными свойствами (например, полярных и неполярных групп). [c.366]

    Коллоиды и эмульсии. Коллоиды и эмульсии имеют много общих диэлектрических свойств. Диэлектрическое поведение водных коллоидных растворов определяется структурой коллоидных частиц. На величине диэлектрической проницаемости сказываются также физико-химические свойства коллоидов, такие, как тиксотро-пия, анизотропия, образование мицелл. У гидрофильных коллоидов (желатин) часть молекул воды внедряется в мицеллы и не участвует в ориентационной поляризации. Вода, связанная в мицеллах, в отличие от свободной имеет диэлектрическую проницаемость е к2. Так как при явлениях тиксотропии происходит связывание или освобождение молекул растворителя, то это сопровождается изменениями диэлектрической проницаемости. [c.255]

    Для гидратации белка наибольшее значение имеют пептидные связи, за счет которых притягивается примерно /3 всей гидрата-ционной воды. В общем частицы гидрофильных коллоидов связывают значительные количества воды так, 1 г сухого крахмала при растворении связывает 0,18 г воды, 1 г яичного альбумина (белка) — 0,35 г воды, 1 г карбоксигемоглобина — 0,353 г воды. Связанная полярными группами вода приобретает новые качества, приближающие ее к твердому веществу ее молекулы имеют уплотненное расположение, свойства воды как растворителя понижены, она не замерзает при низких температурах и т. п. В свою очередь, гидратированное вещество также приобретает иные свойства повышается его устойчивость в растворе, уменьшается скорость диффузии и др. Вязкость и скорость образования внутренних структур в этих растворах значительно выше, чем в коллоидных. [c.174]


Смотреть страницы где упоминается термин Структура и свойства коллоидных растворов: [c.312]    [c.294]    [c.336]    [c.312]    [c.420]    [c.312]    [c.377]    [c.18]    [c.299]   
Смотреть главы в:

Курс общей химии -> Структура и свойства коллоидных растворов




ПОИСК





Смотрите так же термины и статьи:

Растворов свойства

Растворы коллоидные



© 2025 chem21.info Реклама на сайте