Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Описание химической связи в методе молекулярных орбиталей (МО)

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]


    Недостатком ТКП является полное игнорирование ковалентного вклада в образование координационных соединений. Поэтому наиболее эффективным подходом к описанию свойств комплексных соединений является учитывающий одновременно ионный и ковалентный вклад в, образование связи метод молекулярных орбиталей (ММО). Согласно этой теории химическая связь в комплексных соединениях осуществляется электронами, находящимися не на АО, локализованных только около центрального атома и данной рассматриваемой группы, а комплексообразование происходит в результате образования новых молекулярных орбиталей (МО), каждая из которых простирается на все ядра системы. Форма и энергия этих новых МО, каждая из которых может содержать не более двух электронов в соответствии принципом Паули, зависит от характера взаимодействующих АО. [c.384]

    В ряде случаев метод валентных связей не в состоянии объяснить наличие парамагнетизма, например в молекуле О2. Объяснение этому факту дает другой метод описания химической связи — метод молекулярных орбиталей. [c.115]

    В данном учебнике описание электронного строения молекул и химической связи ведется на основе метода молекулярных орбиталей., [c.59]

    Существует два основных подхода к описанию химической связи метод валентных связей и метод молекулярных Орбиталей. "  [c.82]

    Электронное строение молекулы кислорода. Характер химической связи в молекуле кислорода О2, а соответственно и некоторые свойства молекулярного кислорода необъяснимы с позиций теории общих электронных пар, рассмотренной в 3.7. Однако они становятся понятны при использовании другого способа описания ковалентной связи — метода молекулярных орбиталей. Не вдаваясь в суть этого метода, укажем лишь некоторые его постулаты  [c.355]

    Метод молекулярных орбиталей в описании химической связи. Основные понятия. Перспективы метода [c.60]

    При описании химической связи методом молекулярных орбиталей исходят из того, что все электроны связанных атомов участвуют в образовании химической связи и в соединении находятся на так называемых молекулярных орбиталях. В многоатомных молекулах одна молекулярная орбиталь, содержащая обычно два электрона, может охватывать все ядра молекулы. Электронная пара, находящаяся на такой молекулярной орбитали, называется делокализованной в отличие от локализованных пар, связывающих только два ядра. [c.100]

    Даже для молекулы типа ацетилена применение целых гибридов при обсуждении химической связи пе оправдано качественно, так как нет причин полагать, что гибрид, наилучший для построения связи СН, будет иметь то же отношение 5 р, что и гибрид для описания тройной углерод-углеродной связи. Расчеты по методу молекулярных орбиталей показывают, что 2рг-орбиталь углерода вносит больший, чем 25-орбиталь, вклад при образовании СН-связей, но меньший, чем 25-орбиталь, вклад при образовании С—С-связей в этой молекуле. [c.178]


    Детальное рассмотрение методов ВС и МО с описанием математических моделей химических связей выходит за пределы настоящего курса. Ограничимся лишь кратким качественным описанием физических моделей химических связей и молекулярных орбиталей, представления о которых будут использоваться ниже для интерпретации строения и реакционной способности органических соединений. [c.26]

    Понятие о методе молекулярных орбиталей. Более универсальным квантово-химическим методом описания химической связи является метод молекулярных орбиталей (ММО), развитый в трудах Леннарда—Джонса, Гунда и особенно Малликена. В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталялт (МО), подобно тому, как электроны в атомах характеризуются атомными орбиталями (АО). При этом и. АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентровые, а МО — многоцентровые орбитали. Итак, ММО — квантово-химический метод описания химической связи, рассматривающий молекулу и любую многоатомную систему как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.88]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Для описания химической связи наиболее широко используются два подхода метод молекулярных орбиталей (МО) и метод валентных связей (ВС). В развитии метода ВС особая заслуга принадлежит В. Гейтлеру и Ф. Лондону, Д. Слетеру и Л. Полингу, в развитии метода МО — Р. Малликену и Ф. Хунду. [c.44]

    Область применения метода молекулярных орбиталей очень широка. Этот метод дает самый общий подход ко всем химическим соединениям. Метод незаменим для описания систем с нелокализованными связями, для объяснения свойств разнообразных комплексов (см. стр. 122). В настоящее время теория молекулярных орбиталей является доминирующей в теории химической связи и в теоретической химии вообще. Ее математический аппарат наиболее удобен для проведения количественных расчетов на компьютерах. [c.102]

    В связи с указанными-преимуществами метода МО при описании электронного строения молекул в этой книге изложение проблем химической связи ведется на основе метода молекулярных орбиталей. [c.87]

    Следующим этапом в развитии этой модели был учет влияния периодического поля решетки на поведение электронов. Дальнейшее ее совершенствование привело к созданию зонной теории твердого тела и описанию химической связи с позиций метода молекулярных орбиталей. [c.129]

    Описание процесса формирования химической связи и геометрического построения многоатомных частиц проводится квантово-механически с помощью метода валентных связей и метода молекулярных орбиталей, взаимно дополняющих и уточняющих друг друга. [c.157]

    ТЕОРИЯ ВАЛЕНТНЫХ СХЕМ. Существуют два основных подхода к описанию химических связей. С одним из них, методом молекулярных орбиталей, мы уже познакомились. Второй подход называется методом валентных схем и заключается в следующем. [c.65]

    В отличие от упомянутых в предыдущем параграфе модельных, наглядных представлений о химической связи квантовомеханический подход есть способ математического описания состояния (энергетического, пространственного) электрона в той или иной-системе (атоме, молекуле, кристалле и т. п.). Естественно, что может существовать и на самом деле существует несколько математических методов решения одной и той же квантовомеханической задачи о движении электрона. Эти методы не очень строго называют теориями химической связи, хотя они тождественны в своей физической основе и опираются на один и тот же расчетный аппарат волновой механики при этом, однако, различаются исходные позиции и из-за вынужденной приближенности расчетов (как уже отмечалось в гл. 4, уравнение Шредингера точно решается в настоящее время только в случае одноэлектронной задачи) отличаются количественные результаты, получаемые при различных степенях приближения. Поэтому в зависимости от объекта рассмотрения (конкретной молекулы) или поставленной задачи используются разные более или менее равноправные методы. Здесь будут рассмотрены два из них метод валентных связей (ВС) и метод молекулярных орбиталей (МО) первый благодаря его большей наглядности и связи с предыдущими теориями хид и-ческой связи, в частности с теорией Льюиса—Ленгмюра электронных пар, а второй — из-за лучшего описания строения и свойств, молекул при использовании его простейшей формы. [c.107]


    В настоящее время для описания химической связи более широко, чем метод ВС, используется метод молекулярных орбиталей (МО), в основе которого лежит представление о полной потере индивидуальности атомов, соединившихся в молекулу последняя состоит, таким образом, не из атомов, а представляет собой качественно новую систему, образованную несколькими атомными ядрами и движущимися в их поле электронами. Молекула образуется, если энергия такой системы оказывается ниже, чем энергии исходных атомных систем. [c.118]

    Ввиду исторического значения и всеобъемлющего охвата рассматриваемой области может показаться странным, что изложение деталей метода валентных схем приведено только в конце книги, особенно когда некоторые наиболее важные концепции теории валентности, такие, как гибридизация и резонанс, были сформулированы вначале как часть метода молекулярных орбиталей. Причина того, что авторы отложили описание этого вопроса до столь поздней стадии, заключается в том, что метод валентных схем в своей простейшей форме дает, вообще говоря, менее удовлетворительную картину химической связи, чем простейший вариант теории молекулярных орбиталей. [c.287]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Изменение свойств атомов, когда они входят в состав молекулы, обусловлено тем, что атомные орбитали в молекуле исчезают, а их взаимодействие приводит к другому состоянию валентных электронов, которое можно наиболее просто описать с помощью молекулярных орбиталей. На этом основано описание химических связей и электронной структуры молекул в методе молекулярных орбиталей. Рассмотрим простейший случай взаимодействия. [c.60]

    Метод молекулярных орбиталей. Как было показано в предыдущих параграфах, метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентной связи, дает удовлетворительное описание структуры и свойств больщого числа молекул, Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. [c.135]

    Дальнейшему развитию теории гетерогенного катализа способствовало использование метода молекулярных орбиталей (МО) — теория поля лигандов для комплексных соединений. Поскольку в этой теории рассматриваются молекулярные орбитали адсорбированных молекул (атомов) и атомов катализатора, она дает возможность установления связи между их химической способностью и каталитической активностью катализатора. Для расчетов обычно используется метод линейных комбинаций атомных орбиталей (МОЛКАО). Широкому использованию кваптоЕомеханических расчетов в в атализе в настоящее время препятствуют трудности математического описания сложных многоатомных систем субстрат — катализатор. А [c.304]

    Таким образом, и вещества с дефицитом валентных электронов, по существу, выходят за границы применимости МВС. Факты, не объяснимые существующими теориями, — писал А. М. Бутлеров, — наиболее дороги для науки, от их разработки следует по преимуществу ожидать ее развития в ближайшем будущем . Другой метод квантовой химии — метод молекулярных орбиталей (ММО) — объясняет химическую связь в ковалентных веществах, а также в соединениях с избытком и с дефицитом валентных электронов, 36. Понятие о методе молекулярных орбиталей. Бо. 1ее универсальным квантовохнми-ческим методом описания химической связи служит метод молекулярных орбиталей (ММО), развитый в трудах Леннарда-Джонса, Г унда и особенно Малликена В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталями (МО), подобно тому как электроны в атомах характеризуются атомными орбиталями (АО). При этом и АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентро-Бые, а МО—многоцентровые орбитали. Итак, ММО — квантовохимический метод описания химической связи, рассматривающий молекулу и другие многоатомные системы, как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.120]

    Можно построить стандартные комбинации и для других правильных геометрических фигур, таких, как тригональная бипи-рамида (соответствующие гибридизации 5р д( или 5рс1 ). Однако интерес к этой области существенно уменьшился в последние г(. лы поскольку доминирующая роль в теории химической связи перешла от метода валентных схем к методу молекулярных орбиталей, и описание связи на основе представлений о гибридизации вне химии углерода встречается все реже. [c.179]

    В рамках теории валентных связей волновые функции реагентов и продуктов и 1 ) являются локализованными двухцентровыми одноэлектронными орбиталями связей. В наших целях можно использовать даже октетную теорию химической связи Льюиса при условии, что ее структурные формулы адекватно описывают рассматриваемую систему (следует, однако, проводить различие между а- и я-компснентами двойных связей). Из орбиталей связей, преобразующихся друг в друга операциями симметрии, необходимо сконструировать линейные комбинации, отвечающие неприводимым представлениям точечной группы симметрии системы. Соответствующие неприводимые представления полностью эквивалентны представлениям, по которым преобразуются занятые молекулярные орбитали, полученные при молекулярно-орбитальном описании системы. После того как построены такие симметризованные функции, правила отбора для реакций, найденные с их помощью, оказываются совершенно аналогичным описанным выше. Во многих случаях формализм метода валентных связей имеет определенные преимущества по сравнению с методом молекулярных орбиталей, поскольку получить из орбиталей связей правильно симметризованные комбинации часто легче, чем установить симметрию занятых молекулярных орбиталей. [c.389]

    ПОНЯТИЯ, введенного в разд. 10.1. Такой подход показывает, что в однодетерминантной теории молекулярных орбиталей недооценивается корреляция электронов распределение электронов 1 и 2 по определенной молекулярной орбитали совершенно независимо, чем обусловлена, в частности, одинаковая вероятность появления структур XдXv и ХдХц- В методе ВС, наоборот, переоценивается корреляция электронов, поскольку в нем допускается только возможность полного разделения электронов на обоих атомах. Из всего сказанного выше следует, что а) правильное описание должно привести к результатам, промежуточным между данными методов ВС и МО в тех случаях, когда оба метода приводят к одинаковому результату, такой результат должен быть весьма достоверным б) для улучшения описания химической связи в рамках метода ВС необходимо учитывать ионные структуры, т. е. использовать волновую функцию вида (10.144). [c.264]

    Химику ситуация может показаться более сложной, поскольку, начиная с 50-х г., ряд исследователей использует в хидши твердого тела не одноэлектронное приближение, а некоторые идеи метода валентных связей — ВС (см. по этому поводу разд. 1.5.3). Однако следует иметь в виду, что возможности метода ВС, по существу, ограничены лишь качественным описанием химической связи. Известно также, что необходимость учета большого числа валентных структур приводит к серьезным трудностям при применении метода ВС для описания энергетического спектра даже сравнительно малых молекул. Такие трудности возрастают при переходе к твердо гу телу, что делает метод ВС малопригодным для из чения электронной структуры кристаллов. В качестве исторического прецедента здесь можно сослаться па эволюцию молекулярной квантовой химии, быстрое и эффективное развитие которой в послевоенное время было обусловлено как раз переходом от метода ВС к одноэлектрои-пому приближению в виде метода молекулярных орбиталей — Л10, идея которого полностью совпадает с основной идеей зоиттоп теории. [c.7]

    В этой и следующей главах мы предварительно кратко рассмотрим (или напомним) общие основы одноэлектронной модели, а также ее применение для описания химической связи. Как мы увидим, испо,1ьзование одноэлектропного приблингения для атомов, молекул п твердых тел приводит, соответственно, к общеизвестной оболочечной теории атома, методу молекулярных орбиталей (МО) в молекулярной квантовой химии и к зонной теории твердого тола. [c.9]

    Поскольку для переноса электронов фосфора на й-орбитали необходима значительная энергия, делались попытки описания химической связи в фосфоранах без привлечения -орбиталей. Расчеты по методу молекулярных орбиталей для РН5 показали, что участие -орбиталей оказывает лишь незначительное стабилизирующее влияние на несвязывающие орбитали [10]. Таким образом, по-видимому, в расчетах по методу МО роль З -орбиталей в образовании а-остова незначительна. Хотя привлечение З -орбиталей не является, по-видимому, необходимым для описания о-остова, они могут использоваться для описания я-связей. [c.19]

    Описание химической связи в методе молекулярных орбиталей (МО). Метод валентных связей (ВС) широко используетсп химиками. В рамках этого метода большая и сложная молекула рассматривается как состоящая из отдельных двухцентровых и двухэлектронных связей. Принимается, что электроны, обусловливающие химическую связь, локализованы (расположены) между двумя атомами. К большинству молекул метод валентных связей может быть применен с успехом. Однако имеется ряд молекул, к которым этот. метод неприменим или его выводы находятся в противоречии с опытом. [c.110]


Смотреть страницы где упоминается термин Описание химической связи в методе молекулярных орбиталей (МО): [c.127]    [c.42]    [c.11]    [c.177]    [c.230]    [c.45]    [c.72]   
Смотреть главы в:

Неорганическая химия -> Описание химической связи в методе молекулярных орбиталей (МО)

Неорганическая химия Издание 2 -> Описание химической связи в методе молекулярных орбиталей (МО)

Неорганическая химия -> Описание химической связи в методе молекулярных орбиталей (МО)




ПОИСК





Смотрите так же термины и статьи:

Метод молекулярных орбиталеи

Метод молекулярных орбиталей ММО

Молекулярная метод Метод молекулярных

Молекулярные орбитали а- и я-связи

Молекулярные орбитали орбитали

Орбитали и химическая связь

Орбитали метод

Орбиталь молекулярная

Связь метод

Связь химическая молекулярная

Химическая связь

Химическая связь в методе

Химическая связь связь

Химическая связь. Метод молекулярных орбиталей

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте