Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамическое описание химических процессов

    ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ ХИМИЧЕСКИХ ПРОЦЕССОВ 2.1. Химическая переменная [c.35]

    ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ ХИМИЧЕСКИХ ПРОЦЕССОВ [c.17]

    Для термодинамического описания химического процесса необходимо иметь значения термодинамических функций (параметров), отвечающих определенным состояниям веществ (реагентов). [c.74]

    Основные законы термодинамики являются общими для всех макроскопических систем независимо от природы образующих их частиц и характера взаимодействия между ними. Поэтому термодинамическому описанию химических систем и процессов (химической термодинамике) должно предшествовать изложение общих принципов термодинамики и связанных с ними основных термодинамических понятий и соотношений. [c.204]


    Уравнение (12) имеет первостепенное значение в термодинамическом анализе химических процессов для химической технологии. Изменение свободной энергии при химической реакции может быть определено экспериментально с использованием уравнения (11) или (12). Для того чтобы использовать первое из них, необходимо определить Н и S для каждого вещества, что делается обычно при помощи калориметрической техники, описанной в разделе И1, и использования термохимических данных об энтальпиях образования (здесь это не рассматривается). Энтальпии и энтропии ЧИСТЫХ веществ, участвующих в реакции, могут быть рассчитаны также по спектроскопическим и структурным молекулярным данным, но обычно только для газового состояния. Для того чтобы использовать уравнение (12), необходимо определить константу равновесия реакции по измерениям парциальных давлений или состава. Для практического использо вания указанных уравнений при изучении химических реакций важно иметь информацию, касающуюся температурной зависимости свободной энергии, энтальпии и энтропии каждого реагента. Большая часть данной главы посвящена проблеме изучения этих свойств для органических кристаллов. [c.15]

    На примере реакции диметилхлортиофосфата с метиловым спиртом показаны преимущества использования параметрического разложения свободной энергии активации по мольным долям компонентов реакционной смеси для кинетического описания химических процессов в жидких гомогенных средах без растворителя или в концентрированных растворах. Разложение свободной энергии активации по мольным долям компонентов реакционной смеси позволяет описывать кинетику реакций с малым числом параметров. Константам этого разложения можно придать четкий термодинамический смысл линейные коэффициенты соответствуют логарифмам констант скоростей в избытках соответствующих компонентов. [c.222]

    Для описания адекватной модели традиционно используются следующие группы характеристик — стехиометрические, равновесные термодинамические и кинетические. Стехиометрические характеристики не связаны с кинетикой процесса являясь конкретным выражением ОКТ (3.1), они налагают на процесс лишь балансовые ограничения. То же самое можно, в принципе, сказать и о равновесных термодинамических характеристиках. Что же касается кинетических характеристик, то до последнего времени под исследованием кинетики сложного химического процесса традиционно понималось определение его кинетических характеристик [63, 68]. Одной из важнейших таких характеристик является кинетическая доля стадии [c.234]


    Нужно оговорить, что в этой книге использованы равноценные термины олефины и алкены , так как первый термин традиционно применяется и удобен при описании химических и технологических процессов, а второй — при обобщении термодинамических и кинетических расчетов. Рассматриваемые в книге закономерности справедливы для различных соединений с двойной связью, однако основное внимание уделено изомеризации алициклических олефинов, имеющих наибольшее техническое значение. Это позволило рассмотреть различные типы изомеризации в книге относительно небольшого объема. [c.6]

    К процессам массообмена относятся абсорбция, ректификация, кристаллизация, адсорбция, экстракция и др. Их особенностью является осуществление физико-химических процессов в нескольких сосуществующих фазах. При этом уравнения балансов должны быть записаны отдельно для каждой из фаз. Проиллюстрируем математические описания для некоторых типов массообменных аппаратов и для установившегося процесса. Укажем, что скорость массообмена определяется скоростью переноса компонента из одной фазы в другую. Условия термодинамического равновесия приводят к равенству химических потенциалов компонента в сосуществующих фазах. Внутри фазы перенос вещества осуще- [c.80]

    Многие процессы химической технологии характеризуются сложностью и недостаточной изученностью гидродинамических и физико-химических явлений, сопровождающих процесс. В таких случаях говорят, что процессы плохо обусловлены для математического описания. При этом технологические расчеты базируются на приближенных модельных представлениях о внутренней структуре гидродинамической и физико-химической обстановки в промышленном аппарате (используются модели структуры потоков, модели химической и диффузионной кинетики, модели термодинамического равновесия и т. п.). Модельные принципы описания ФХС приводят к необходимости вместо энергетических диаграмм строить так называемые модельные диаграммы, являющиеся топологическим (диаграммным) представлением описаний сложных физико-химических процессов, протекающих в технологической аппаратуре. Характерным примером последних могут служить модели структуры потоков в аппаратах совместно с механизмами источников и стоков субстанций. [c.23]

    Диаграммы связи химических реакций с учетом диссипативных эффектов. Выше были рассмотрены методы топологического описания химических реакций без учета других термодинамических характеристик системы (температуры, давления, энтропии), изменяющихся в процессе химического превращения. Учет термодинамических параметров позволяет полнее представить в диаграммном виде структуру явлений, происходящих в физико-хи- [c.125]

    В этом параграфе мы остановимся только на методах, относящихся к расчетам термодинамических свойств веществ и термодинамических параметров химических реакций. В качестве примера кратко рассмотрим одну из форм описанного автором метода однотипных реакций и процессов. [c.291]

    Как эти, так и другие простые соотношения между термодинамическими параметрами химических реакций и фазовых переходов при сопоставлении их в условиях, отвечающих одинаковому значению констант равновесия, связаны по существу с описанными в 10 соотношениями для процессов, происходящих в условиях, когда /С = 1 и, следовательно, AG = 0. В этих условиях [c.185]

    Оптимальное управление сложными химико-технологически-ми комплексами возможно только в том случае, когда адекватное описание их основано на учете законов протекания физических и химических процессов, при использовании термодинамических и кинетических закономерностей протекания процессов с выявлением особенностей влияния различных параметров на состояние веществ и процессов. [c.3]

    Пусть / = f(x, уг, уо,. .. г/ ) — свободная энергия или другая термодинамическая функция, которая используется для описания данного физико-химического процесса. Величины х н у-, характеризуют реагенты и процесс. В роли х и г/j могут выступать температура, давление, прочности химических связей, структурные особенности реагентов, растворитель и др. Предположим для простоты, что функцию /, зависящую от двух переменных хну, можно представить в виде [c.43]

    Технологические процессы синтеза, переработки и использования полимеров практически никогда не реализуются как равновесные. В связи с этим комплекс потребительских свойств полимерных материалов обусловлен тем уровнем структурообразования, который достигается формируемой системой к моменту принудительного прекращения конкретного процесса. Вот почему достаточна строгое описание таких процессов может быть осуществлено при совместном анализе как роли гибкости макромолекул, так и динамики структурообразования в полимерных системах. Иными словами, анализ кинетики процессов в полимерных системах наряду с термодинамическими характеристиками их весьма важен для обоснованного научного прогноза. Это тем более существенно, что как в живой природе, так и во многих вариантах химических технологий осуществляются взаимные переходы гомофазных и гетерофазных полимерных систем, причем истинное равновесное состояние практически никогда не реализуется. [c.9]


    Термодинамические процессы протекают очень часто в системах с переменным числом частиц. Например, в ходе химической реакции меняется количество исходных и конечных реагентов, при фазовых переходах меняется количество вещества в отдельных фазах и т. д. Для описания этих процессов вводят в рассмотрение понятие химического потенциала. На систему не накладывается никаких ограничений она может быть открытой, закрытой или изолированной. [c.31]

    Химия изучает вещества и их превращения. Свойства веществ опреде.пя-ются атомным составом и строением молекул или кристаллов. Химические превращения сводятся к изменению атомного состава и строения молекул. Поэтому понимание химических процессов невозможно без знания основ теории строения молекул и химической связи. Число известных химических соединенш имеег порядок миллиона и непрерывно возрастает. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем. Поэтому так важно знание общих закономерностей химических процессов. Термодинамика позволяет предсказать направление процессов, если известны термические характеристик, веществ — теплоты образования и теплоемкости. Для многих веществ этих данных нет, но они могут быть с высокой точностью оценены, если известно строение молекул или кристаллов, если известна связь между термодинамическими и структурными характеристиками веществ. С другой стороны, статистическая термодинамика позволяет рассчитывать химическое равновесие по молекулярным постоянным частотам колебаний, моментам инерции, энергиям диссоциации молекул и др. Все эти постоянные могут быть найдены спектральными и другими физически.ми методами или рассчитаны на основе теоретических представлений, но для этого надо знать основные законы, управляющие движением электронов в атомах и молекулах, и строение молекул. Это одна из важных причин, почему мы должны изучать строение молекул и кристаллов, теорию химической связи. [c.5]

    В основе химической кинетики лежит кинетический метод исследования, отражающий качественную и количественную стороны общей картины хода химических процессов во времени. Качественная сторона базируется на химическом объяснении сущности процесса и охватывает описание механизмов химических реакций. Количественная проявляется в использовании кинетического метода как общего метода изучения химических процессов. При этом широко используются представления о химической структуре реагирующих веществ, их термодинамических характеристиках. [c.186]

    До сих пор при обсуждении зависимости потенциалов обратимых электродов от состава раствора мы не касались вопросов кинетики и механизма процессов на границе электрод — раствор. Описание электродных процессов составляет предмет рассмотрения в курсе электрохимии, а потенциометрические измерения проводят в условиях протекания малых токов в измерительной цепи (и, следовательно, через границу электрод — раствор). Поэтому термодинамический подход к обсуждению основ потенциометрии является традиционным, тем более, что большинство надежных термодинамических данных, характеризующих химические реакции в растворах, получено методом э. д. с. Однако изучение конкретных электродов на самом деле очень редко удается провести без привлечения сведений о кинетике электродных процессов. [c.540]

    Возможности обобщенного термодинамического описания в известной мере ограничены. Оставаясь в рамках термодинамической теории, нельзя предсказать, какая из возможных ситуаций реализуется за пределом устойчивости, например возникнет ли периодический процесс или набор устойчивых стационарных состояний. Развиваемый в книге математический аппарат не позволяет вычислить фазовую траекторию конкретной химической системы или параметры предельного цикла для этого необходимы динамические уравнения. Однако такой недостаток не умаляет познавательной ценности универсальных термодинамических методов. [c.6]

    В заключение еще раз подчеркнем, как уже отмечалось в данной главе, что в сложных энерготехнологических процессах вопросы математического моделирования тепломассопереноса тесно связаны с рассмотрением физико-химических процессов. В последнее время при рассмотрении физико-химических процессов и анализе динамического поведения сложных нелинейных систем все большее внимание уделяется вопросам неравновесной термодинамики [5.35]. При этом большой интерес при моделировании физико-химических процессов, также как и для процессов тепломассопереноса, представляет отмеченный в данной главе обобщенный термодинамический подход, базирующийся на постулатах Л.Онзагера. Например, в соответствии с [5.36] применительно к физико-химическим превращениям, при описании скоростей реакций обобщенными движущими силами в стационарном неравновесном состоянии могут быть как химические сродства, так и фадиенты различных потенциалов в соответствующих потенциальных полях. [c.427]

    О выборе вместо F а U других термодинамических функций для характеристики адсорбционных процессов. Выше было отмечено, что при проведении измерений изотерм, изостер и теплот адсорбции в вакуумных установках с постоянным объемом (подсистемы 116 и Пв) внешнее давление работы не производит. В случае подсистемы Па работа, производимая постоянным внешним давлением р°, учитывается в величине AI7. Давление газа внутри подсистемы 1 во всех случаях изменяется, а объем этой системы остается постоянным. Поэтому за рабочую и тепловую функции [17] для адсорбционной системы мы выбрали соответственно свободную энергию Гельмгольца F и внутреннюю энергию U. В случае физико-химических процессов, осуш,ествляемых при постоянном внешнем (гидростатическом) давлении Р во всей системе и переменном объеме системы, рабочей и тепловой функциями системы являются соответственно свободная энергия Гиббса G = F PV и энтальпия Я = f7 PV. Однако по указанным выше причинам применение функций G ш П для описания адсорбционных опытов нецелесообразно. Также нецелесообразно применение в этих случаях рабочей функции в форме F -j-PV аА [90] и тепловой функции в форме U PV +стЛ, так как в адсорбционных опытах с твердыми телами а, во-первых, изменяется, а, во-вторых, не измеряется. Поэтому применение подобных рабочих и тепловых функций для процессов адсорбции на твердых телах может быть лишь формальным. В рассмотренных выше случаях, когда в процессе адсорбции р и а изменяются, использование этих функций не упрощает записи термодинамических формул. По этим причинам эти функции в этой главе не рассматриваются. В разд. 1 гл. VI рассматривается функция Q = pV - -лА, представляющая сумму произведений обобщенных силовых и геометрических параметров системы газ — адсорбент, поскольку эта функция непосредственно связана с большой статистической суммой для газа, взаимодействующего с поверхностью твердого тела. [c.148]

    В книге изложены основные принципы феноменологической термодинамики необратимых процессов в тесном сочетании с представлениями классической феноменологической термодинамики, приведены важнейшие термодинамические уравнения состояния и на этой базе дано описание различных физико-химических процессов, таких как химические превращения, структурная релаксация, теплопроводность, электропроводность, диффузия, седиментация, термодиффузия, дис узионный термоэффект, фильтрация, электроосмос, ток течения, осмос, теплопередача, термоосмос, механокалорический эффект и т. д., происходящих в однородных, непрерывных и прерывных системах. [c.2]

    Третья, четвертая и пятая главы посвящены непосредственно описанию необратимых физико-химических процессов в различных системах (однородных, непрерывных и прерывных). Здесь значительное место отводится химическим превращениям. Большая часть относящегося к ним материала сосредоточена в третьей главе. Особое внимание при рассмотрении химических процессов уделяется выбору числа и вида независимых переменных, необходимых для термодинамического описания, расчету изменений свойств системы в ходе процесса при различных граничных условиях, критериям самопроизвольного течения химических реакций в терминах сродства и скоростей, выражению законов химического равновесия в различных концентрационных шкалах, записи феноменологических уравнений, анализу связи (сопряжения) между реакциями. [c.7]

    Настоящая книга представляет собой сборник статей, посвященных феноменологическому описанию некоторых плазмохимических процессов, кинетическим и термодинамическим расчетам химических реакций в плазменных струях, некоторым возможностям управления этими процессами, проблеме максвеллизации системы смешивающихся газов и оптической диагностике плазменных струй приложен также обзор известных из научной и технической литературы данных об использовании плазмы и плазменных струй в промышленности. [c.11]

    Как отмечал Б. И. Китаев, и использовал в своих разработках, при математическом описании явлений теплообмена и восстановления между ними можно найти определенную аналогию, связанную с характером погашения потенциалов процессов по высоте слоя. Для теплообмена таким потенциалом является разность температур потоков теплоносителей, а для восстановления — разность действующего и равновесного парциальных давлений восстановителя (в изотермических условиях) или его концентраций (при постоянном давлении). По нашему мнению, эта аналогия полностью соответствует развиваемой в настоящее время методике обобщенного термодинамического подхода к детерминированному описанию сложных обменных процессов (см, гл. 5, п. 5.4), а также [10.3]. Однако это далеко не полная аналогия. Прежде всего, потенциал теплопереноса связан с состоянием обоих потоков, в то время как потенциал восстановительного процесса не зависит от состояния (степени восстановления) железорудного материала. Кроме того, если коэффициент теплоотдачи в уравнении теплообмена сравнительно мало изменяется по высоте слоя, то коэффициент массообмена при восстановлении существенно зависит от степени восстановления материала и, следовательно, будет переменным по ходу процесса. Это отличие объясняется определяющим влиянием диффузионных и химических сопротивлений при восстановлении кускового железорудного материала, тогда как теплообмен в слое обычно лимитирует внешнее сопротивление. Указанные особенности восстановительного процесса, как, впрочем, и других физико-химических процессов, во многом определяют различие результатов теоретического анализа явлений тепло- и массообмена в слое при кажущейся одинаковости их математических моделей. [c.296]

    Рассмотренные выше неполные модели интерпретировали закономерности обмена ионов и не касались вопроса о закономерностях распределения растворителя между ионитом и равновесной с ним фазой. Между тем, способы описания взаимодействия ионитов с водой представляют большой интерес. Во-первых, как один из путей вывода уравнений, описывающих зависимость поглощения растворителя от его активности в равновесной с ионитом фазе получаемые при этом данные имеют первостепенное значение для термодинамических расчетов. Во-вторых, как эффективный способ построения замкнутой системы описаний взаимодействий в фазе ионита ясно, что такая система, наряду с описанием селективности ионита к обменивающимся ионам, должна работать и при объяснении закономерностей поглощения воды. В третьих, с формально-термодинамических позиций задача создания модели, описывающей поглощение растворителя, сама по себе может быть не менее важной, чем описание ионообменного процесса. Последнее справедливо, поскольку вклад неидеальной составляющей химического потенциала растворителя в общую величину О -" (стр. 16) может быть достаточно велик и сведение его к нулю при построении хорошей эталонной системы является такой же равноправной задачей, как и ликвидация коэффициентов активности соединений противоион — фиксированный ион. [c.129]

    Вследствие термодинамической эквивалентности рассмотренных ансамблей для описания равновесного состояния макросистемы (или изменения ее состояния при квазистатическом процессе) можно использовать любую из рассмотренных выше функций распределения, в частности ту, которая обеспечивает наибольшую простоту математической процедуры определения наблюдаемых величин в рассматриваемой задаче. Обычно в этом смысле наиболее удобны функции /с и с, поэтому их часто используют не только для исследования обратимых процессов, протекающих при фиксированных значениях температуры Т, объема V, химического потенциала ц, но и для исследования обратимых процессов, протекающих при других внешних условиях. В то же время функция т. с изолированной макросистемы, т. е. макросистемы с фиксированными значениями энергии Е, числа частиц N и объема V, может быть использована не только для описания обратимых процессов, протекающих при фиксированных значениях величин Е, Ы, V. Так, в разделе 1.2 при выводе второго начала термодинамики [см. уравнение (1.2.37)] рассматривался процесс, в ходе которого изменялись объем V и энтропия 5 — 8 Е, Ы, V) макросистемы. При этом состояние макросистемы в ходе такого процесса описывалось с помощью функции распределения т. с, выведенной для изолированных макросистем (т. е. макросистем, объем и энтропия которых неизменны). [c.107]

    Для расчета величин ц,, как это следует из (1.37), к системе с заданным содержанием всех компонентов необходимо добавить некоторое, желательно очень малое, количество /-го компонента, определить изменение АС в этом процессе и рассчитать предел отношения АС1Ап1 при Дл, 0. Возникает вопрос об источнике /-го компонента. Вообще говоря, У-й компонент может находиться вне системы в любом состоянии, в котором он может быть, при любой температуре или давлении, в реальном или гипотетическом состоянии, а также в разнообразной химической форме, например, источником метана может служить этан и т. д. Но так можно поступать лишь до тех пор, пока не учитывают химические превращения вешеств. При термодинамическом описании химических процессов нужно выбрать единый для всех веществ (исходных и конечных) нуль отсчета, чтобы учитывать изменения энергии, связанные с химическими превращениями. Поэтому для расчета величин химических потенциалов используют введенные ранее стандартные состояния и стандартные условия. [c.55]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]

    Какие научные дисциплины являются пофаничными для химической кинетики Прежде всего синтетическая химия, располагающая офомным фактическим материалом по химическим реакциям, а именно знанием, какие реагенты в каких условиях превращаются в те или иные продукты. Строение вещества дает необходимые сведения о строении частиц, межатомных расстояниях, дипольных моментах и др. Эти данные необходимы для построения предполагаемых механизмов превращения. Химическая термодинамика позволяет рассчитывать термодинамические характеристики химического процесса. У математики и1нетика заимствует математический аппарат, нужный для описания процесса, анализа механизма, построения корреляций. На данные молекулярной физики кинетика опирается, когда анали-з 1руется процесс в зависимости от фазового состояния системы, где протекает реакция. Спектроскопия и хроматофафия вооружают кинетику методами контроля за протеканием процесса. Лазерная спектроскопия служит основой для создания уникальных методов изучения возбужденных состояний молекул и радикалов. [c.17]

    Можно полагать, что методы совместного кинетико-термодинамического анализа неравновесных процессов окажутся достаточно продуктивными и для описания еще одного важного физико-химического явления, относящегося к возникновению пространствен-но-временных диссипативных структур, — возникновения упорядоченных тепловых волн, движущихся в неподвижном слое зерен катализатора или инертного материала при фильтрации через него реакционноспособной химической смеси. [c.393]

    Смесь веществ, участвующих в химическом процессе, практически всегда содержит многоко.мпонентные фазы — растворы. Главная особенность термодинамического описания таких систем связана с использованием парциальных молярных величин, относящихся к отдельным компонентам (см. 9.5). Поэтому для применения основных принципов термодинамики к растворам и процессам с их участием необходимо прежде всего установить термодинамические соотношения между парциальными молярными величинами. [c.227]

    Одной из важнейших вех на пути развития химии явилось открытие Д. И. Менделеевым периодического закона элементов, ставшего основой химической систематики, развития учения о строении вещ,ества и создания теории химических процессов. Большое значение для углубления представлений о природе химических превращений имело их энергетическое, точнее, термодинамическое описание. Именно термодинамика внесла в химию представление о количественной мере направления и глубине. химических процессов, т. е. о химическом сродстве, или энергии Гиббса. Термодинамический метод позволил количественно связать химические превращения с влиянием температуры и давления, с изменением концентраций веществ. На этой основе периодический закон обрел прочную базу для количественного описания свойств еще неизученных, а иногда и несинтезированных веществ. [c.8]

    Для количественного термодинамического описания функционирующего катализатора как неравновесной физико-химической системы теоретически оценены масштабы возможных перегревов тепловыделяющих активных частиц катализатора в процессе сильно экзотермических реакций, которые могут составлять десятки и сотни градусов. Оценка реальной температуры активного компонента весьма существенна для понима- [c.57]

    В начале обратим внимание читателя на очень любопытное обстоятельство системы, в которых образуется азеотропная смесь, обладают существенными особенностями в термодинамическом описании, есть основания говорить о целом научном направлении термодинамики азеотропных систем. Образование азеотропа оказывает принципиальное влияние на протекание процессов перегонки и ректификации как в двойных, так и в более сложных системах. И в то же время азеотропные системы, не обладают абсолютно никакими особенностями в чисто химическом отношении, не обладают какой-либо спецификой межмолекулярных взаимодействий. Нередко встречающееся замечание, что азеотро-пизм — это как бы крайнее проявление неидеальности системы, является неточным. [c.58]

    Зачастую при рассмотрении таких переходов линия равновесия формально рассматривается как линия равенств химических потенциалов ([х(р, Т)) обеих фаз. При этом чаще всего игнорируются условия механического равновесия фазовой границы и то, что функция р, (р, Т) в области метастабильности (а эта область обязана существовать, поскольку фазовые переходы I рода могут реализовываться только через процесс образования зародыша новой фазы) не определена и ее нельзя рассматривать как аналитическое продолжение функции из области стабильности, отвечающей полностью равновесному состоянию вещества [13]. В данном случае образование зародыша конечных размеров, а следовательно, необходимость учета межфазной энергии и возникающих упругих полей в системе существенно меняют условия равновесия в системе, так что каждому метастабильному состоянию отвечает равновесие с зародышем новой фазы определенных размеров. При этом упругое поле, возникающее из-за контакта фаз с различными деформациями и мольными объемами, при определенных условиях оказывается пропорциональной не площади поверхности контакта, а объему фаз [25]. С учетом возникающей из-за гистерезиса необратимости процессов (понятие линии равновесия в известной мере теряет смысл) и невозможности трактовки термодинамического описания как предельного случая кинетического подхода при бесконечно малом отклонении системы от равновесия, становится понятна ограниченность расчетов по термодинамическим функциям без учета деформации и зародышеобразования. Эти трудности будут подробнее обсуждены в рамках развитого в работах А. Л. Ройтбурда, Б. Я- Любова и др. [27] представления о фазовом переходе как стохастическом процессе (характеризуемом параметром перехода ф), в ходе которого система эволюционирует через цепь метастабильных состояний. Для этого рассмотрим переход графит—алмаз с учетом упругих полей деформаций без конкретизации механизма такого превращения, поскольку имеющихся в настоящее время экспериментальных данных для этого недостаточно. [c.304]

    Адсорбция в микропористых телах существенно ютличается йт адсорбции на поверхности более широких нор или на, непористых гюверхностях, Вещество, адсорбированное в микропорах, диспергировано в сети пустот, имеющих размеры, соизмеримые с размерами самих адсорбированных молекул. Так как все пространство внутри каждой микропоры находится в поле действия адсорбционных сил, количество адсорбированного вещества является линейной функцией не геометрической поверхности микропор, а их объема. В этом смысле существует аналогия между процессом образования твердого раствора и адсорбцией паров или растворенных веществ микропористыми материалами. На этом основании авторы работ [76, 77] считают необходимЬ1М при рассмотрении равновесия адсорбции в микропористых йа териалах учитывать вклад изменения химического потенциала адсорбента в обЕЦее изменение химических потенциалов системы, поскольку молекулы адсорбированного вещества взаимодействуют со всем объемом микропористого адсорбента, а не только с его поверхностью. В этом случае для термодинамического описания адсорбционного равновесия следует исходить из уравнения Гиббса— Дюгема  [c.59]


Смотреть страницы где упоминается термин Термодинамическое описание химических процессов: [c.86]    [c.73]    [c.47]    [c.10]    [c.151]    [c.129]    [c.206]   
Смотреть главы в:

Термодинамика для химиков -> Термодинамическое описание химических процессов

Задачи по химической термодинамике -> Термодинамическое описание химических процессов




ПОИСК





Смотрите так же термины и статьи:

Процесс термодинамический



© 2024 chem21.info Реклама на сайте