Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение температуры и состава раствора

    Аналогично протекают процессы испарения и конденсации е системах гомогенных азеотропов, образующих постоянно кипящие смеси с максимумом точки кипения. Здесь также, если состав перегоняемого раствора равен уе (фиг. 27), то выкипание системы будет происходить при постоянной температуре и неизменном составе жидкой и паровой фаз во все время испарения начального раствора, пока не выкипит его последняя капля. Также н при охлаждении насыщенного пара состава уе процесс конденсации будет протекать при неизменной температуре и постоянном составе образующейся жидкой и остаточной паровой фаз, пока не перейдет в жидкость последний пузырек пара. Если же начальный состав системы отступает в ту или другую сторону от азеотропического, то перегонка и конденсация протекают с изменением температуры и состава жидкой и паровой фаз. Так, если состав а меньше Уе, то процесс перегонки сопровождается повышением температуры и обогащением остаточной жидкой фазы компонентом ау, который на интервале концентраций 0<а<уе играет роль высококипящего. Если же состав а начальной системы больше азеотропического состава Уе, то в ходе перегонки, сопровождающейся постепенным повышением температуры, состав остатка прогрессивно обогащается компонентом а, который на интервале концентраций уе <я<Г1 играет роль высококипящего. [c.66]


    При изменении температуры (давления) раствора, кривая давления пара которого имеет минимум, а кривая температур кипения — максимум, состав пара раствора и состав азеотропного раствора изменяются в противоположных направлениях (антибатно). [c.203]

    На различии в равновесных составах жидкой и паровой фаз основано разделение неограниченно растворимых жидкостей перегонкой. На диаграмме кипения верхняя линия /д/ц выражает зависимость температуры конденсации пара от его состава. Нижняя линия /д/в выражает зависимость температуры кипения раствора от его состава. Диаграмма двумя линиями разделена на три поля. Поле / — область существования пара (С = 2 — 1 + 1 =2) поле 2 — область существования жидкости (С = 2 — 1 + 1 =2), системы однофазны, имеют по две степени свободы, т. е. произвольно можно задавать температуру и состав без нарушения равновесия поле 3 характеризует двухфазное состояние системы (пар и жидкость) с одной степенью свободы (С = 2--2+1 = 1), т. е. произвольно можно задавать только один параметр. Каждой температуре кипения соответствуют определенные составы жидкой и паровой фаз. Любая фигуративная точка в поле 3 (например, точка а) отражает валовый (общий) состав системы. Чтобы найти составы фаз, необходимо провести изотерму через точку а. Состав жидкой фазы определяется точкой / (Хв = 0,2), паровой — точкой 2 (уд = 0,6). Пар обогащен компонентом В. Согласно закону Коновалова, прибавление легколетучего компонента В в исходный раствор, например до состава х , вызывает понижение температуры кипения исходной жидкости (от <1 до /г). При изотермическом изменении валового состава системы (от х = 0,4 до Хв = 0,5, что на диаграмме соответствует перемещению фигуративной точки а в точку Ь) число фаз и их составы остаются прежними (лр = 0,4 у = 0,6), но происходит [c.95]

    Процесс однократного испарения (однократной конденсации) осуществляется при постоянном общем составе. Если жидкую смесь (точка I иа рис. 97, с. 284) подвергнуть изобарному нагреванию, то при достижении температуры кипения (точка х- ) и последующем подводе 6Q теплоты появится первый пузырек пара (состава У ), более богатый легколетучим компонентом, чем первоначально взятая жидкость. В результате жидкость обогатится высококипя-щим компонентом, что вызовет увеличение его содержания в последующих порциях пара и повышение температуры кипения (исходная точка переместится вверх по кривой кипения). Так как процесс происходит без отвода пара, то отношение количества пара к количеству жидкости непрерывно увеличивается. Если бы подвод тепла продолжался до полного испарения жидкости, то пар, образовавшийся из последней капельки жидкости, имел бы состав (точка г/а), совпадающий с составом первоначально взятой жидкости, а микроскопический остаток жидкости, переходящий в паровую фазу, имел бы состав Хг. [Процесс однократной конденсации схематически показан также на рис. 97 (у — / ).] Плечи рычагов, соответствующие жидким фазам, изображены сплошными линиями, а отвечающие паровым фазам — пунктирными. Из схем видно, каким образом изменяются с изменением температуры состав фаз и соотношение между ними (правило рычага). Разделение компонентов раствора путем однократного испарения или перегонки в равновесии отличается простотой и особенно удобно в тех случаях, когда температуры кипения чистых веществ резко различны или же когда требуется лишь обогащение смеси одним из компонентов. На практике обычно ограничиваются испарением части жидкости  [c.293]


    Рассмотрим фракционную перегонку двухкомпонентной жидкой смеси, не образующей азеотропного раствора, пользуясь диаграммой кипения (рис. 136). Для разделения исходную смесь состава X о нагревают при постоянном давлении до кипения (фигуративная точка Оо), при этом получается первый пузырек пара (фигуративная точка Ьо) состава Пар по сравнению с исходной жидкостью более богат легколетучим компонентом В, а раствор обогащается компонентом А и его температура кипения при подводе теплоты возрастает (фигуративная точка а ). В процессе перегонки состав жидкого раствора изменяется от Х до а состав пара — от Ко ДО Кх- Если весь полученный пар сконденсировать (первая фракция), то конденсат будет иметь состав У и промежуточный между Ко и У . При кипении оставшейся жидкости (фигуративная точка 04) состава Х1 получается пар, также обогащенный легколетучим компонентом В. При изменении состава жидкого раствора от Х1 до состав пара меняется от У г до У и получается конденсат состава У2 (вторая фракция). При дальнейшем испарении оставшейся жидкости аналогично можно получить третью, четвертую и т. д. фракцию, при этом кипящая жидкость по составу будет приближаться к чистому компоненту А с температурой кипения Т. Если каждую из полученных фракций подвергнуть аналогичной перегонке, то получится набор новых фракций, обогащенных легколетучим компонентом. Сходные по составу фракции объединяют и подвергают дальнейшему фракционированию до тех пор, пока конденсат не будет представлять собой практически чистый компонент В, а перегоняемая жидкость — чистый компонент А. [c.394]

    Получение разделительных мембран с помощью деформации полимера в ААС интересно, в первую очередь, с точки зрения простоты их изготовления. Действительно, основные методы получения полимерных мембран основаны на процессах, происходящих при фазовом разделении концентрированных растворов полимеров, в результате чего возникают высокодисперсные пористые пленки, которые и используются в качестве разделительных мембран. Очевидно, что такой метод изготовления полимерных мембран требует большой затраты времени и точного регулирования параметров процесса, таких как режим изменения температуры, состав раствора полимера, скорость испарения растворителя и др. [c.171]

    Пусть катодным процессом будет выделение водорода [уравнение (4)1. Если мы какими-нибудь изменениями условий (температура, состав раствора и пр.) повысим перенапряжение водорода, то поляризационная кривая катодного процесса сместится в сторону —г, например в положение к. Если при этом (в первом приближении) анодная кривая а не сместится, то потенциал металла изменится до величины е, при которой =, и так как при этом < 3, то, очевидно, скорость растворения металла уменьшится. [c.510]

    При изменении температуры испарения растворов, кривая упругости пара которых имеет минимум, состав пара растворов и состав нераздельно кипящей смеси изменяются в противоположных направлениях. [c.106]

    Третий закон Вревского. При изменении температуры (давления) раствора, кривая давления пера которого имеет максимум, состав пара раствора и состав азеотропной смеси изменяются в одном и том же направлении при изменении температуры (давления) раствора, кривая давления которого имеет минимум, состав пара раствора и состав азеотропной смеси изменяются в противоположных направлениях. [c.64]

    Влияние температуры и давления на состав пара и состав азеотропной смеси. Законы Вревского. Состав пара, равновесного с жидким раствором заданной концентрации, зависит от температуры, при которой находится равновесная система, и от общего давления над раствором. Так, пар, находящийся в равновесии с жидкостью состава X (рис. 134) при температуре Т1, имеет состав Xi, а при температуре Гг — Х . Направление изменения состава пара над раствором заданной концентрации с изменением температуры и давления устанавливает первый закон Вревского при произвольном повышении температуры или давления пар, находящийся в равновесии с раствором заданного состава, обогащается тем компонентом, парциальная молярная теплота испарения которого больше. Этот закон справедлив для любых летучих смесей независимо от того, образуют или не образуют они азеотропные смеси. [c.393]

    Его можно формулировать так при изменении температуры состав азеотропного раствора в системах, обладающих максимумом на кривой давления пара, изменяется в том же направлении, как и состав равновесного пара, а в системах, обладающих минимумом, — в противоположном направлении. [c.383]

    Из вышесказанного ясно, что в гетерогенной бинарной системе, состоящей из трех фаз — двух жидких и парообразной, составы равновесных жидких слоев однозначно определяются температурой. С изменением температуры состав обоих растворов будет изменяться. Однако повышение температуры [c.122]


    Одно время предполагали, что экстремальные точки на кривых давления пара и точек кипения соответствуют образованию определенных химических соединений обоих компонентов системы, однако эта точка зрения уже давно опровергнута и исправлена. Было установлено, что с изменением давления или температуры состав азеотропа изменяется и, если вести перегонку системы при различных давлениях, то получаются пары различного состава. Кроме того, неидеальность этих растворов сказывается еще и в том, что максимумы и минимумы наблюдаются также и на кривых зависимости других свойств системы от состава, причем экстремальные точки на кривых двух различных свойств могут отвечать различным составам. [c.35]

    С обеими жидкими фазами в равновесии находится одна паровая фаза определенного состава. Следовательно, независимо от состава исходной смеси в пределах до при данной температуре имеем неизменные составы каждой из двух жидких фаз и равновесную с ними паровую фазу. При изменении состава исходной смеси от О до и от до 1, когда при данной температуре образуется однородный раствор, состав паровой фазы, равновесной с таким однородным раствором, будет изменяться с изменением концентрации этого раствора. [c.68]

    При изменении растворимости с изменением температуры бинодальная кривая будет также менять свое положение. В большинстве случаев взаиморастворимость компонентов повышается с увеличепием температуры и область существования гетерогенных двухфазных систем уменьшается. При повышении температуры системы до критического значения ,,р компоненты, входящие в состав данной системы, полностью взаимно растворяются друг в друге, образуя гомогенный однофазный раствор. [c.279]

    Сырая нефть в исходных условиях представляет собой условно-молекулярный раствор, либо коллоидно-дисперсную систему. Высокозастывающие нефти и пара-финистые газовые конденсаты, как правило, при 20°С представляют собой коллоидно-дисперсные системы. Состав дисперсной фазы в этих системах принципиально различен и здесь не рассматривается, однако структурные преврап ения в системах связаны с изменением температуры и имеют общие закономерности. На рис. 9.2 изображены возможные конфигурации дисперсной фазы в высокозастывающих нефтях и газовых конденсатах без депрессоров и в их присутствии. [c.245]

    Третье правило Вревского гласит, что если на фазовых диаграммах давление пара — состав (температура — состав) имеется максимум (минимум), то при изменении температуры изначально азеотропного раствора состав пара и состав азеотропа меняются в одном направлении если на фазовых диаграммах давление пара — состав (температура — состав) имеется минимум (максимум), то при изменении температуры изначального азеотропного раствора состав пара и состав азеотропа меняются в противоположном направлении. Эти положения проиллюстрированы рис. 1 1.6. [c.196]

    Зависимость растворимости твердых веществ от температуры графически выражают кривой растворимости (рис. 7). Изучение кривых растворимости позволяет установить, изменяется ли состав соединений, образуемых растворенным веществом с растворителем. Если качественный состав вещества нри изменении температуры не меняется, то кривая растворимости идет плавно. Изломы на кривой говорят об изменении состава имеющихся в растворе частиц. [c.18]

    По третьему закону Вревского при произвольном изменении температуры или давления в системах с максимумом на кривой давления пара (минимумом на кривой температур кипения) состав пара, равновесного с раствором заданной концентрации, и состав азеотропной смеси изменяются в одинаковом направлении (ас и аа, рис. 135, /) в системах с минимумом на кривой давления пара (максимумом на кривой температур кипения) составы равновесного пара и азеотропной смеси изменяются в противоположных направлениях (aj и aia[, рис. 135, //). [c.393]

    Первый закон Вревского гласит при повышении температуры раствора заданного состава его пар обогащается тем компонентом, для которого больше дифференциальная теплота парообразования . Второй закон Вревского определяет влияние изменения температуры и давления на состав систем, имеющих экстремум давления и температуры если давление (температура) системы рас- [c.288]

    Твор —пар имеет максимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, для которого больше дифференциальная теплота парообразования-, если же давление (температура) системы раствор — пар имеет минимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, для которого дифференциальная теплота. парообразования меньше. Этот закон справедлив для состояний двойных систем, далеких от критических. Третий закон Вревского устанавливает связь между смещениями состава системы, имеющей экстремум давления и температуры, и свойством фазы, устойчивой выше температуры сосуществования, при изменении Р я Т-. при изменении температуры (давления) раствора, у которого кривая давления насьщен-ного пара имеет максимум, состав пара раствора и состав азеотропной смеси изменяются в одном и том же направлении-, при наличии минимума на кривой давления насьщен-ного пара эти составы изменяются в противоположных направлениях. [c.290]

    Bpee Koro. 1. Закон, согласно которому при повыщении температуры раствора его пар обогащается тем компонентом, парциальная мольная теплота испарения которого больше. 2. Закон, согласно которому если на кривой зависимости общего давления пара от состава раствора имеется максимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, парциальная мольная теплота испарения которого больше если на этой кривой имеется минимум, то при повышении температуры в азеотропной смеси возрастает концентрация того компонента, парциальная мольная теплота испарения которого меньше. 3. Закон, согласно которому если на кривой зависимости общего давления пара от состава раствора имеется максимум, то при изменении температуры состав пара, находящегося в равновесии с раствором постоянного состава, и состав азеотропной смеси изменяются в одном направлении если на этой кривой имеется минимум, то соответствующие составы изменяются в противоположных направлениях. [c.145]

    Разумное объяснение хода зависимостей Д/ " = f(m) для растворов NaJ в смешанных спирто во-водных растворителях можно получить на основе представлений о гетеросалективной сольватации ионов, поскольку в изучаемой области составов смешанных растворителей образуются смешанные сольваты ионов [24-25]. С изменением температуры состав сольватов меняется. Дпя такого объяснения в работе [27] используются данные [24] об изменениях энтальпии сольватации ионов, приведенные в табл. 6. [c.166]

    При повышении температуры растворов, кривая давления пара которых имеет максимум (минимум), в нераздельнокинящем растворе возрастает относительное содержание того компонента, испарение которого требует большей (меньшей) затраты энергии . Наконец, более подробный анализ приводит к формулировке третьего закона 3. При изменении температуры (давления) раствора, кривая давления нара которого имеет максимум, состав пара раствора и состав нераздельнокипящего раствора изменяются в одном и том же направлении. При наличии минимума на кривой эти изменения происходят в противоположных направлениях . В. с. имеют большое значение для технологич. практики процессов перегонки и ректификации. См. также Растворы. [c.333]

    Ненасыщенные полиэфиры представляют собой общирную гамму продуктов, вязкость которых в-зависимости от состава и строения колеблется в широких пределах в большинстве случаев от 10 до 10 Па-с при 20°С. Вязкость растворов полиэфиров в мономерах при 20 °С находится, как правило, в пределах 1—7 Па-с. Ее можно регулировать, варьируя состав и М полиэфира (или соотношение полиэфир мономер), а также путем изменения температуры. Низковязкие растворы находят применение главным образом в составе пропиточных и заливочных композиций растворы средней вязкости— как связующие для стеклопластиков, изготовляемых контактным и вакуумным формованием, намоткой и т.д. высаковяз-кие —как связующие для прессматериалов. [c.58]

    Закон Рауля, являющийся одним из основных в теории перегонки и ректификации, приложим далеко не ко всем растворам. Существуют так называемые азеотропные смеси, образующие при известном составе нераздельно кипящую фракцию, перегоняющуюся при постоянной температуре, которая мо-жет быть или более высокой или более низкой, чем температура кипения компонентов. Например, бензол <т. кип. 80,2° С) и циклогексан (т. кип. 80,75° С) образуют азеотропную смесь с содержанием 55 /о бензола и температурой кипения 77,5° С. Разделить азеотропные смеси перегонкой и ректификацией невозможно, так как при известной температуре будет кипеть нераздельно кипящая смесь. Чтобы разделить азеотропную смесь, приходится прибегать или к изменению температуры перегонки путем изменения внешнего давления или прибавлением третьего компонента (при изменении давления паров меняется состав азеотропной смеси), или использовать различную растворимость или различие температур застывания компонентов, входящих в азеотропную смесь. При обычной перегонке нефти, когда получаются фракции, кипящие в широких интервалах температур, наличием азеотропных смесей можно пренебречь и считать, что нефть представляет идеальный раствор, следующий закону Рауля. С особенностями азеотропных растворов приходится сталкиваться при выделении из легких фракций нефти отдельных индивидуальных углеводородов, особенно ароматических. Например для правильного распределения метановых углеводородов по двухградусньш фракциям при тщательной ректификации бензина оказалось необходимым удалить предварительно из бензмна ароматические углеводороды. При перего нке бензинов бензол (т. кип. 80,2° С) концентрируется во фракциях, кипящих. при 71—75° С, а толуол (т. кип. 110,6° С) концентрируется во фракции с температурой кипения ЮГ С. [c.173]

    При эксплуатации состав оксидировочного раствора изменяется за счет испарения воды, разложения окислителей, накопления солей железа. О необходимости корректирования можно судить по изменению температуры кипения раствора и внешнего вида оксидной пленки. Повышение температуры кипения указывает на необходимость добавления воды, понижение ее — на необходимость добавления щелочи. [c.9]

    Анализ этого уравнения приводит к формулировкам первого и второго законов Вревского 1. При повышении температуры раствора заданного состава его пар обогащается тем компонентом, парциальная молярная теплота испарения к-рого из р-ра больше . 2. При повышении температуры растворов, кривая давления пара которых имеет максимум (минимум), в пераздельнокипящем растворе возрастает относительное содержание того компонента, испарение которого требует большей (меньшей) затраты энергии . Наконец, более подробный анализ приводит к формулировке третьего закона 3. При изменении температуры (давления) раствора, кривая давления пара которого имеет максимум, состав пара раствора и состав нераздельнокипящего раствора изменяются в одном и том же направлении. При наличии минимума на кривой эти изменения происходят в противоположных направлениях . В. с. имеют большое значение для технологич. практики процессов перегонки и ректификации. См. также Растворы. [c.333]

    При изменении растворимости с изменением температуры бинодальная кривая будет менять свое положение. Поскольку в большинстве случаев взаимная растворимость компонентов повышается с увеличением температуры, область существования расслаивающихся систем сокращается. При некоторой температуре 4р, называемой критической, компоненты, входящие в состав трехфазной системы, будут полностью растворяться друг в друге, образуя гомогенный жидкий раствор. [c.305]

    Согласно уравнению (П.77) при Ф = 1 (например, в точке /) / = 2, природа системы останется неизменной, если варьировать независимо друг от друга (но в определенных пределах ) и температуру, и состав. Так, смещение из точки / и по горизонтали (изменение концентрации), и по вертикали (изменение температуры) не вызовет в определенном интервале Тис кристаллизации (и кипения). То же справедливо и в отнощении любой точки на кривых кристаллизации индивидуальных веществ (например, в точке g) здесь, правда, диапазон изменения Тис ограничен односторонним перемещением (для точки g лишь вверх и вправо). При Ф = 2 (например, в точке /i) / = 1 это означает, что между температурой и растворимостью данного компонента (или — что одно и то же — между концентрацией насыщенного раствора и температурой кристаллизации компонента — в рассматриваемом случае В) существует однозначная зависимость. Она и выражается кривой be. При Ф = 3, а это возможно лишь в точке е, где могут сосуществовать раствор, насыщенный компонентами А и В, и кристаллы этих веществ, / = 0. Безвариантность системы означает, что равновесие всех трех фаз (при данном давлении) обеспечивается единственным сочетанием концентрации (абсцисса точки е) и температуры (ее ордината) .  [c.130]


Смотреть страницы где упоминается термин Изменение температуры и состава раствора: [c.239]    [c.239]    [c.278]    [c.278]    [c.117]    [c.44]    [c.45]    [c.333]    [c.31]    [c.380]    [c.400]    [c.86]    [c.241]    [c.241]    [c.71]   
Смотреть главы в:

Графические расчеты в технологии неорганических веществ -> Изменение температуры и состава раствора

Графические расчеты в технологии минеральных веществ Издание 2 -> Изменение температуры и состава раствора

Графические расчет в технологии минеральных веществ Издание 2 -> Изменение температуры и состава раствора




ПОИСК





Смотрите так же термины и статьи:

Изменение температуры

Растворов состав



© 2025 chem21.info Реклама на сайте