Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование и свойства метана

    Химические свойства. Метан отличается малой химической активностью. В обычных условиях на него не действуют ни кислоты, ни щелочи, ни даже такие сильные окислители, как марганцовокислый калий. Он реагирует только с очень небольшим количеством веществ. К числу таковых относится хлор. Взаимодействие метана с хлором (хлорирование) — реакция, весьма характерная для него. Она состоит в постепенном замещении атомов водорода атомами хлора, что приводит к образованию так называемых хлорпроизвод-ных метана  [c.195]


    Физические и химические свойства. Метан — газ без цвета и запаха, малорастворим в воде, легче воздуха (относительная плотность по воздуху равна 16/29 = 0,55). Он не способен к реакции присоединения, только атомы водорода могут в нем замещаться атомами хлора, брома, иода и фтора. Если, например, приготовить смесь метана с хлором в закрытом цилиндре, то желто-зеленая окраска хлора будет постепенно исчезать вследствие образования новых соединений. Хлор, реагируя с метаном, постепенно замещает в нем атомы водорода. Эту реакцию, идущую в несколько стадий, можно представить уравнениями  [c.159]

    Сходство химического состава сырых нефтей может привести к гипотезе, что углеводороды сырой нефти, достигшие равновесия в определенных условиях температуры и давления их образования, более или менее одинаковы для всех сырых нефтей. Вообще говоря, эта гипотеза несовместима с термодинамическими свойствами углеводородов. Известно, что все углеводороды сырых нефтей термически нестабильны и могут быть превращены в такие стабильные системы, как, например, метан или этан и углерод. Такие реакции, однако, характеризуются высокими значениями энергии активации и поэтому невозможны при тех низкотемпературных условиях, которые соответствуют образованию и залеганию сырой нефти. Реакции изомеризации протекают значительно легче, в частности в присутствии некоторых гетерогенных катализаторов, таких, как алюмосиликатные системы, обычно имеющиеся в нефтяных пластах. Следовательно, равновесие между изомерами таких углеводородов более вероятно, чем равновесие, рассмотренное выше. [c.23]

    Целлюлозные материалы содержат 40—45% кислорода, который участвует в процессе горения так же, как и кислород воздуха. Характерное свойство целлюлозных материалов — способность при нагревании разлагаться с образованием паров,газов и углеродистого остатка. Количество образующихся при этом газообразных (летучих) продуктов и их состав (водяной пар, диоксид и оксид углерода, метан и др.) зависит от температуры и режима нагревания горючих веществ. Разложение целлюлозных материалов сопровождается выделением тепла, поэтому при малой скорости теплоотвода возможно их самонагревание и самовозгорание. [c.187]

    Таким образом, образование моля ацетилена и трех молей водорода из двух молей метана (при условии, что все участники реакции находятся в стандартных состояниях) сопровождается большим возрастанием изобарного потенциала системы. Это означает невозможность образования ацетилена (в стандартных состояниях) и, более того, его термодинамическую неустойчивость по отношению к метану и водороду, так как реакция, обратная процессу (У.61), протекала бы с убылью изобарного потенциала, равной — 74 280 тл/моль СаНз. Именно такими термодинамическими свойствами ацетилена определяется его способность к взрывному разложению, особенно при несколько повышенных давлениях. [c.119]


    Галиды и оксиды -металлов высшей степени окисления имеют неметаллический (кислотообразующий) характер. Например, титан проявляет степени окисления -1- 4, +3 и - -2. В свойствах тетрахлорида титана Т1а не проявляется признаков ионной связи он — легколетучая жидкость (Т , = 250 К, 7 ки = 419 К), электрический ток не проводит, молекула обладает тетрагональной симметрией (метан, алмаз). Энергетически образование ионной связи невозможно, так как потенциалы ионизации при последовательном удалении электронов весьма велики У, =6,81 (У2—13,6 / = 28,4 и, = 45,4 и /5=101,0. [c.316]

    При сопоставлении реакционной способности исследованных углеводородных газов (метан, этан, пропан, пропан-пропиленовая фракция) видно, что их положение зависит от молекулярной массы и химических свойств. В направлении уменьшения реакционной способности по отношению к реакции образования углеродных отложений они располагаются в следующем порядке пропан. пропан-пропиленовая фракция, этан, метан. При сопоставлении кинетических зависимостей установлено, что самые высокие скорости образования углеродных отложений наблюдаются в случае использования пропана, средние - у пропан-пропиленовой фракции и этана, низкие - у метана. [c.62]

    Сопоставление состава полученного конвертированного газа с соответствующими данными термодинамического равновесия, рассчитанными по описанной выше методике, показывает, что содержание метана в газе, полученном на нанесенном катализаторе, выше, а в полученном на сплавном катализаторе — ниже, чем равновесная концентрация метана. Такая разница может быть объяснена различием механизма процесса на нанесенном и сплавном катализаторах. Можно предположить, что на сплавном катализаторе гомологи метана, содержащиеся в нефтезаводском газе, взаимодействуют с водяным паром, образуя метан и углекислоту, которая реагирует с водородом, содержащимся в сырье, образуя метан и воду последняя реакция не доходит до состояния равновесия. На нанесенном катализаторе, обладающем лучшими гидрирующими свойствами, водород вступает в реакцию с гомологами метана, образуя метан, который взаимодействует с водяным паром с образованием водорода и углекислоты в последней реакции также не достигается равновесия в условиях эксперимента. Таким образом, в обоих случаях не устанавливается равновесие по реакции [c.270]

    Асфальтены в нефти стабилизированы молекулами смол и частично молекулами других углеводородных соединений. Сольватный слой мицелл асфальтенов препятствует образованию пространственной структурной сетки. Следовательно, рост содержания стабилизаторов частиц асфальтенов, например молекул смол, приводит к ослаблению структурно-механических свойств нефти. Наоборот, добавление в нефть компонентов, нарушающих условие стабилизации и утончающих сольватный слой мицелл, является причиной усиления этих свойств. Не все газовые компоненты нефти одинаково влияют на структурное образование. Наибольшее влияние на структурно-механические свойства нефти оказывает азот, в меньшей степени - метан и этан. Роль остальных газообразных углеводородов в структурообразовании незначительна. [c.19]

    Отсутствие неподеленных пар в молекуле СН4, во-первых, приводит к заметному упрочнению связей и, во-вторых, делает метан гораздо менее реакционноспособным по сравнению с соединениями элементов 15-17 й групп. Высокая симметрия sp -гиб-ридных орбиталей приводит к тому, что тетраэдрические молекулы метана лишены дипольного момента и поэтому межмолекулярные силы слабы, а отсутствие неподеленных пар на атомах углерода делает невозможным образование водородных связей в жидком СН4, что сразу же сказывается на его физических свойствах. [c.305]

    Последовательность процессов возникновения органических веществ разной степени сложности можно представить следующим образом. В результате действия всех видов энергии из химических элементов синтезировались первичные соединения углеводороды (в первую очередь метан), аммиак, цианистый водород, окись углерода, сероводород, простейшие альдегиды (и прежде всего формальдегид) и т.д. Эти соединения сами по себе не имели биохимического значения. Основным их свойством была высокая реакционная способность. Первичные соединения служили исходными веществами для образования биохимически важных органических соединений — мономеров. Из мономеров путем конденсации возникали полимеры — основные составные компоненты всех живых организмов. [c.190]

    Каталитические свойства этих металлов связаны с их адсорбционными характеристиками. Выдающаяся активность рутения в реакции образования метана объясняется меньшим сродством окиси углерода к этому металлу, чем к другим элементам семейства платины. Так, хемосорбированную на рутении окись углерода можно полностью удалить восстановлением или эвакуацией при 150° С в ее присутствии адсорбция водорода увеличивается метан с заметной скоростью образуется уже при температуре около 100° С. Напротив, на платине окись углерода адсорбируется предпочтительно из смеси с водородом и ее не удается полностью удалить указанными способами при 150° С. Промежуточное положение занимают родий и иридий, в отношении которых имеются некоторые доказательства взаимодействия окиси углерода с водородом незначительное количество метана в присутствии этих контактов обнаружено при 200° С. [c.124]


    Анаэробные пруды. В этих сооружениях бактерии осуществляют анаэробный распад органических веществ с образованием таких конечных продуктов, как углекислый газ и метан. Кроме того, образуются промежуточные соединения, обладающие запахом, такие, как органические кислоты и сероводород. Два основных преимущества анаэробной очистки по сравнению с аэробным процессом заключаются в малом количестве образующегося ила и в отсутствии необходимости в аэрационном оборудовании. К недостаткам этого способа относится то, что неполная стабилизация вызывает необходимость последующей аэробной очистки, а также то, что для анаэробного распада требуется относительно высокая температура. Сточная вода, подаваемая на анаэробную очистку, должна иметь следующие характеристики высокую концентрацию органических веществ, особенно белков и жиров, относительно высокую температуру, достаточное содержание биологических питательных веществ. Кроме того, в ней должны отсутствовать токсичные вещества. Этими свойствами обладают, например, типичные стоки с мясообрабатывающих предприятий, имеющие концентрацию [c.328]

    Основным источником погрешностей расчета для большей части веществ, свойства которых приведены в табл. 2 и 3, являлись неточности в теплотах образования их из элементов. Однако в ряде случаев [например метан, этан, этен (этилен) и др.] мы знаем тепловой эффект достаточно точно для того, чтобы погрешности в нем не дали существенных ошибок в получаемой в результате вычислений константе равновесия. В этих случаях, чтобы получить надежные результаты, нам необходимо применить вполне надежные и точно рассчитанные зависимости теплового эффекта и энтропии или, что то же, свободной энергии от температуры. Как правило, при такого рода расчетах использование экспериментальных х,анных для теплоемкостей реагирующих веществ не позволяет добиться нужной точности. [c.169]

    Угли являются осадочными породами, состоящими главным образом из окаменелых остатков растительного мира. Каменный уголь отличается от бурого только по своим физико-химическим свойствам, а не геологическим возрастом. Превращение древесины в уголь—медленно развивающийся химико-физический процесс, протекающий в следующем порядке дерево — торф — бурый уголь — каменный уголь — антрацит. Образование торфа сопровождается обугливанием, которое проявляется в увеличении содержания углерода, быстром уменьшении кислорода и медленном уменьшении водорода наряду с незначительным изменением содержания азота. В процессе углеобразования выделяются вода, окись углерода, метан и другие углеводороды. Состав органической массы некоторых видов топлива по процентному содержанию в ней углерода С, кислорода О, азота N и водорода Н изменяется следующим образом  [c.25]

    Каждый фреон имеет свой номер в зависимости от его химической формулы. Свойства фреонов меняются от содержания в них атомов фтора, хлора и водорода. Исходные углеводороды при образовании фреонов—метан СН4 и этан СгНд. [c.50]

    Интересно отметить, что мене активные катализаторы (вольфрамовые, молибденовые) дают более высокое отношение низкомолекулярных изопарафинов к к-парафинам по сравнению с более активным платиновым катализатором, который успевает вызвать изомеризацию изопарафинов в к-парафипы. В гидрогенизатах практически отсутствуют углеводороды с четвертичными атомами углерода. Это также указывает на ионный характер изомеризации, так как образование четвертичного углеродного атома требует энергетически невыгодного перехода третичного иона во вторичный, а затем в первичный. В присутствии алюмокобальтмолибденового катализатора в газовой части содержатся главным образом метан и этан. В основном получаются углеводороды нормального строения меньшего молекулярного веса. Очевидно, этот катализатор обладает ярко выраженным свойством ускорять радикальные реакции. [c.307]

    В специальном исследовании свойств СНг-радикалов [176], полученных разложением диазометана и кетена, было айдено, что метан оказывает малое влияние при комнатной температуре на продолжительность жизни метиленовых радикалов и, следовательно, реакция образования этана [c.86]

    Тиофен-2-альдегид представляет собой бесцветную жидкость, которая и по запаху и по химическим свойствам в высшей степени напоминает бензальдегид. Он окисляется на воздухе в тиофен-2-карбоновую кислоту [105], а под действием концентрированного водного раствора едкого кали превращается в смесь 2-тиенилкарбинола и тиофен-2-карбоновой кислоты. Взаимодействие с уксусным ангидридом и уксуснокислым натрием приводит к образованию р-(2-тиенил)-акриловой кислоты [106] с диметиланилином и хлористым цинком образуется ди-(п-диметиламинофенил)-2-тиенилметан [107]. Альдегид конденсируется с тиофеном в присутствии фосфорного ангидрида, давая три-(2-тиенил)метан [108]. Во многих других реакциях [109] он ведет себя так же, как бензальдегид однако под действием цианистого калия в растворах в отличие от бензальдегида он превращается в резиноподобную массу, из которой все же может быть выделен 2,2 -теноин [110]. [c.180]

    В зависимости от свойств применяемых катализаторов синтез углеводородов происходит по одному из следующих путей 1) при атмосферном давлении на никелевых контактах при низких температурах образуются парафины и олефины, а при температурах выше 200° С образуется главным образом метан 2) при давлениях от 5 до Ъатм и температуре около 190° С на кобальтовых катализаторах происходит образование парафинов и олефинов они образуются также на железных катализаторах при давлениях от 20 до 30 атм и температурах 200—250° С и выше 3) в области высоких давлений (от 100 до 1000 атм) и низких температур в присутствии рутениевых катализаторов образуются высокомолекулярные парафиновые углеводороды. [c.129]

    Орбиты такого типа имеют форму, изображенную на рис. 2, и могут эффективно перекрываться только с той 15-А0 водорода, которая расположена вдоль оси, соединяющей оба центра. Таким образом, эквивалентные орбиты Х1-4 почти не перекрываются друг с другом, так что в достаточно хорошем приближении можно считать, что метан содержит четыре пары электронов, каждая из которых локализована на двухцентровой МО, образованной перекрыванием углеродной 5/ з-гибрндной АО с водородной 15-А(Э. Именно поэтому энергию молекулы можно представить с удовлетворительной степенью точности в виде суммы отдельных энергий связи индивидуальных двухцентровых МО и аналогичная аддитивность наблюдается также в других свойствах молекулы. [c.23]

    Селективность — важнейшее свойство катализатора, используемое для управления ходом сложных реакций и направления их в сторону образования нужного продукта. Только благодаря высокой избирательности цинк-хромового катализатора можно из смеси СО Но получить метанол, а не гораздо более устойчивый в этих условиях метан. В подобных случаях особенно важна чистота веи еств, применяемых для изготовления катализаторов часто ие-больише загрязнения резко снижают избирательность. [c.88]

    Вещества, образующие гидраты этого типа, обладают различными химическими свойствами. Они могут быть и, гидрофобными, не склонными к интенсивному взаимодействию с водой, нанример, за счет образования водородных связей. Этими веществами могут быть насыщенные и ненасыщенные углеводороды, хлор, четырехфтористый углерод, галогензамещенные производные метана и этана, а также аргон, криптон и ксенон. Способность к образованию данным газом гидрата определяется размерами и формой молекул, а не их химической природой. Метан, этан, к-пропан и изо-нропан образуют гидраты, а высшие члены гомологического ряда гидратов не образуют. 1,2-Дихлорэтан, молекула которого имеет вытянутую форму, не образует гидрата, в то время как его наиболее компактный изомер 1,1-дихлорэтан дает гидрат. Верхнему пределу размеров молекул, при которых возможно образование гидратов, соответствует -мольный объем около 85 см (для жидкости). Какую большую роль яграют при образовании гидратов молекулярные размеры, можно показать на примере бутанов в то время как к-бутан не образует гидрат, изо-бутан его образует. [c.404]

    Метан и его гомологи растворяются в воде и нефти, поэтому подземные воды нефтегазоносных районов повсюду содержат растворенный метан. Растворимость метана растет при повышении давления. Это его свойство играет огромную роль при образовании залежей газа. Высока растворимость метана и его гомологов в нефти, и возрастает она также с повышением давления. Поэтому нефть повсеместно содержит углеводородные газы, которые при снижении давления во время добычи вьщеля-ются из нее. При высоком давлении нефть может [c.14]

    Для образования большого количества полимера требуется легкодоступный и дешевый источник углерода. Ферментация позволяет культивировать организм-продуцент в строго определенных условиях среды, контролируя, таким образом, процесс биосинтеза и влияя на тип продукта и его свойства. Специфи- чески изменяя условия роста, можно менять молекулярную массу и структуру образующегося полимера, В ряде случаев максимальная скорость синтеза полисахарида достигается в логарифмической стадии роста, в других — в поздней логарифмической или в начале стационарной. Обычно углеводными субстратами служат глюкоза и сахароза, хотя полисахариды могут образовываться и при росте микроорганизмов на н-алка-,яах( С12-61), керосине, метаноле, метане, этаноле, глицероле и этиленгликоле. Недостатком проведения процесса в ферментерах является то, что среда часто становится очень вязкой, поэтому культура быстро начинает испытывать недостаток кислорода мы все еще не умеем рассчитывать соотношение между скоростью перемешивания неньютоновских жидкостей и подачей кислорода. Необходимо также контролировать быстрые изменения pH среды. И все же упомянутый метод позволяет быстро синтезировать полимер для того, чтобы определить его физические свойства, а также дает возможность оптимизировать состав среды, главным образом в отношении эффективно- сти различных углеводных субстратов. Часто в качестве лимитирующего фактора применяют азот (соотношение углерод азот — 10 1), хотя можно использовать и другие (серу, магний, калий и фосфор). Природа лимитирующего фактора способна определять свойства полисахарида, например его вяз- костные характеристики и степень ацилирования. Так, многие оолисахариды, синтезируемые грибами, фосфорилированы. При недостатке фосфора степень фосфорилирования может уменьшаться или становиться равной нулю в этих условиях может даже измениться соотношение моносахаридов в конечном по- [c.219]


Смотреть страницы где упоминается термин Образование и свойства метана: [c.299]    [c.148]    [c.421]    [c.436]    [c.537]    [c.13]    [c.1652]    [c.65]    [c.125]    [c.83]    [c.83]    [c.106]    [c.15]    [c.148]    [c.176]    [c.414]    [c.122]    [c.179]    [c.40]    [c.77]    [c.81]    [c.261]    [c.296]   
Смотреть главы в:

Руководство по малому практикуму по органической химии -> Образование и свойства метана




ПОИСК





Смотрите так же термины и статьи:

Метан физ. свойства



© 2025 chem21.info Реклама на сайте