Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Автоматизация процессов газовой хроматографии

    В сравнении со старыми методами анализа газовая хроматография дает значительный выигрыш во времени. Многие аналитические проблемы могли быть успешно решены только благодаря ее высоким возможностям разделения. Так как процесс анализа этим методом поддается автоматизации, а продолжительность его во многих случаях измеряется всего лишь несколькими минутами, газовая хроматография уже сейчас часто применяется для контроля технологических операций. [c.9]


    АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ГАЗОВОЙ ХРОМАТОГРАФИИ [c.185]

    С развитием автоматических программаторов температуры, переключателей чувствительности, устройств для ввода пробы, цифровых интеграторов и вычислительных систем для автоматической обработки данных (компьютеров) появилась возможность автоматизации процессов газовой хроматографии. [c.185]

    Во многих промышленных и исследовательских лабораториях требуется проведение непрерывных контрольных измерений и немедленная обработка полученных данных. Например, в медицинских лабораториях повсеместно применяется исследование биологических проб с целью определения в них содержания гормональных веществ. В химической промышленности хроматограф часто используется для непрерывного контроля течения какой-либо химической реакции или для контроля чистоты поступающих реагентов. В этих случаях автоматизация процессов газовой хроматографии оказывается особенно необходимой. Она дает следующие преимущества. [c.185]

    Хроматографический метод — один из наиболее эффективных физико-химических методов разделения и анализа сложных смесей. Он применим к жидким, газообразным и парообразным системам. Газовая хроматография, одна из разновидностей этого метода, практически применима к любым сколько-нибудь летучим соединениям. В настоящее время трудно назвать лабораторию, где бы хроматография не применялась для научных исследований и контроля производства в различных отраслях народного хозяйства. Большую роль она играет в автоматизации производственных процессов, особенно в газовой, нефтехимической н химической промышленности. [c.7]

    В настоящее время газовая хроматография является основным методом анализа продуктов сгорания при проведении исследований процесса горения. С учетом важности автоматизации процессов горения, широкое применение которой сдерживается отсутствием чувствительных датчиков газового анализа, представляет интерес осуществляемая на одной ТЭЦ разработка системы автоматической оптимизации топочных Процессов на базе дискретного хроматографического корректора (см. гл. 11). [c.189]

    В настоящее время газовые хроматографы находят применение не только для контроля, но и автоматизации различных производственных процессов. Такой прибор состоит из дозатора (обеспечивающего однократное или периодическое подведение порций смеси), трубки, содержащей сорбент, на котором компоненты сорбируются по-разному, детектора — прибора, регистрирующего сумму концентраций компонентов на основе применения каких-либо свойств смеси (теплопроводность, электропроводность пламени и т. д.). В результате работы прибора получают кривые — хроматограммы, показывающие зависимость показаний детектора от времени. По высоте пиков или по площади хроматограммы судят о количестве компонентов. [c.196]


    Газовая хроматография используется для разделения многокомпонентных газовых смесей органических (и неорганических газообразных) веществ. С ее помощью можно выделять очень малые количества примесей (до 10 %) и определять их. Возможность автоматизации и малая продолжительность анализа обусловливают щирокое применение газовой хроматографии для непрерывного контроля технологических процессов в химической и нефтехимической промыщленности. [c.190]

    При всех аппаратурных усовершенствованиях в связи с возрастающей автоматизацией она осталась методом, пригодным для непосредственного использования рядовым химиком-экспериментатором и не требующим группы специалистов для обслуживания приборов, как ИК-спектроскопия или спектроскопия комбинационного рассеяния, масс- и резонансная спектрометрия и другие методы. Химик может сам в короткое время овладеть теоретическими и практическими элементами метода в такой степени, что сможет в достаточной мере самостоятельно обслуживать все приборы. В значительной степени этим объясняется наиболее широкое применение газовой хроматографии в научно-исследовательских лабораториях и для химического контроля технологических процессов. [c.26]

    В настоящее время можно сказать, что газовая хроматография вытеснила остальные методы газового анализа. Существенными особенностями ее являются быстрота, высокая точность, возможность проводить анализ, работая с малыми образцами газа (1—100 см ), автоматизация процесса анализа (см. 4 гл. IV). Газовую хроматографию применяют сейчас и в исследовательских целях, и для проведения массовых анализов природного газа при его добыче. Существующий в настоящее время государственный стандарт (ГОСТ 10679—63) предусматривает анализ на газовом хроматографе ХТ-3. [c.159]

    Тщательный анализ и контроль сырья, промежуточных и конечных продуктов производства, создание точнейших приборов для автоматизации производственных процессов — вот задачи, которые призвана решать аналитическая химия на основе новейших физических и химических методов. Об одном из таких методов —о хроматографии — пишет крупнейший специалист в этой области А. А. Жуховицкий, доктор химических наук, заведующий кафедрой физической химии в Институте стали и сплавов. Его основные работы посвящены вопросам поверхностных явлений, теории растворов, теории газовой хроматографии, применению меченых атомов в химии. [c.7]

    Книга является первым обобщением по прибора.м для хроматографического анализа. В нем подробно рассмотрены наиболее общие конструктивные решения отдельных узлов приборов особое внимание уделено работе электронны.х блоков хроматографа и автоматизации хроматографического анализа специальный раздел посвящен изучению хроматографов, используемых для получения эталонных соединений описано при.менение газовой хроматографии в схемах автоматического регулирования технологических процессов. [c.2]

    В настоящее время газовая хроматография является одним из основных методов анализа сложных смесей, а производственныЯ контроль и автоматизация процессов химической и нефтяной про мышленности уже сейчас осуществ.пяются главным образом с помощью газо-хроматографических методов.—Прим. ред. [c.8]

    Легкость аппаратурного оформления. По сравнению с некоторыми другими физико-химическими приборами газовые хроматографы относительно дешевы, более надежны, затраты на установку и эксплуатацию их меньше. Для работы на них не требуется специальной квалификации. Кроме того, имеется возможность полной автоматизации процесса анализа, при этом практически исключаются субъективные ошибки. [c.18]

    В книге изложены теория газовой хроматографии, области ее применения описана аппаратура. Детально рассмотрены проблемы влияния различных факторов на четкость хроматографического разделения. Даны методы идентификации анализируемых смесей, определения примесей. Особое внимание уделено препаративному разделению веществ, использованию газовой хроматографии для физико-химических исследований и для автоматизации технологических процессов. [c.2]

    Газовая хроматография — один из наиболее перспективных физико-химических методов исследования, бурно развивающийся в настоящее время. Создание и успешная разработка различных вариантов газовой хроматографии привели к перевороту в области аналитического контроля и автоматизации производственных процессов нефтяной, химической и других отраслей промышленности, а также в практике научной работы. Газовая хроматография позволяет исследователю быстро и эффективно решать такие задачи, которые ранее казались неразрешимыми или требовали огромных затрат труда и времени. Число публикаций, посвященных теоретическим основам и практическому применению газовой хроматографии, превысило 50 ООО, причем преобладающая часть этих работ относится к последним 25—30 годам. Из общего числа публикаций по аналитической химии газов и органических соединений, появляющихся в последние годы, около половины посвящено хроматографическим методам, из них около четверти — газовой хроматографии. [c.13]


    ПРИМЕНЕНИЕ ГАЗОВОЙ ХРОМАТОГРАФИИ ДЛЯ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ [c.264]

    Создание промышленных хроматографов началось практически одновременно с выпуском стандартных образцов лабораторных газовых хроматографов. Первый промышленный прибор был выпущен в 1954 г. и использован для определения пропана и и-бутана в потоках изобутановой. колонны. Это позволило улучшить показатели технологического процесса [1] на 15%. Массовое производство промышленных хроматографов в СССР, США. и Англии началось в 1956— 1958 гг. В настоящее время на технологических установках нефтеперерабатывающих, химических и металлургических заводов используют большое число хроматографов, обеспечивающих контроль и автоматизацию производственных процессов. Число моделей таких приборов превысило тридцать. [c.287]

    Сравнение хроматографических методов определения термодинамических характеристик сорбции с статическими показывает, что наряду с удовлетворительной точностью результатов газовая хроматография обладает несомненными преимуществами, к числу которых относится автоматизация процесса, экспрессность, а также возможность работы с веществами низкой степени чистоты. Последнее преимущество связано с тем, что при проведении физико-химического измерения одновременно реализуется возможность газовой хроматографии как метода разделения, присутствующие в образце примеси отделяются от основного вещества. Эти возможности хроматографии особенно ярко проявляются в тех случаях, когда на основании однократного процесса, проведенного на высокоэффективной колонке, исследователь может определить физико-химические характеристики индивидуальных компонентов сложных смесей [9]. Так, хроматограмма бензиновой фракции, включающей десятки индивидуальных углеводородов, служит основой для расчета термодинамических функций сорбции каждого из этих углеводородов неподвижной фазой [10]. [c.309]

    Следующим логическим шагом по пути автоматизации, который обсуждался в работе [74], стала автоматическая оптимизация аналитических параметров с точки зрения улучшения хроматографического разрешения и сокращения продолжительности анализа. В некоторых устройствах газовые хроматографы могут быть включены в систему автоматического регулирования процессом. Однако при всех наших теоретических знаниях, касающихся процесса разделения, не всегда удается создать эффективную расчетную модель, и такой метод может быть осуществим только в рамках большой вычислительной системы. [c.474]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Более важным (в том числе и в отношении экономики) обстоятельством является то, что газовая хроматография во всех областях применения переживает эру автоматизации на высоком техническом уровне, позволяющем проводить большое число анализов как при контроле процессов, так и для исследовательских целей. [c.474]

    Полная автоматизация процессов газовой хроматографии поз-Б0Л1ГГ обеспечить как непрерывное функционирование газовых хроматографов, так и автоматическую обработку значительного объема информации, получаемой в результате каждого анализа. [c.197]

    Схема управления газовым хроматографом при помощи ЭВМ представлена на рис. 22. При помощи соответствующих программ ЭВМ дает распоряжения исполнительным механизмам о введении проб в газовый хроматограф, переключении тока газов через различные колонки, о температурном режиме и т. д. Общее управление осуществляется при помощи программы СЕЛДАТ. Программа ТИМСЕТ управляет открытием и закрытием вентилей Vi — в моменты ti, 4, ty, /4 и может давать информацию о ходе анализа в каждый момент времени. Система дает возможность автоматизировать сложный хроматографический анализ, что позволяет сэкономить рабочее время оператора и повышает точность анализа. Большие ЭВМ можно использовать также для анализа и регулирования химического процесса в экспериментальном или производственном масштабе [52, 54]. Вопросы автоматизации режима газовых хроматографов освещены еще в нескольких исследованиях [16,55,56, 69, 70]. [c.58]

    Основными достоинствами препаративной газовой хроматографии как метода разделения смесей являются универсальность, высокие селективность и эффективность разделения, а также возможность полной автоматизации разделительного процесса. [c.205]

    Метод газовой хроматографии хорошо поддается автоматизации. В этом его неоспоримое преимущество перед другими современными приемами физико-химического анализа для химической промышленности. В настоящее время цеха крупн]з1Х химических заводов-комбинатов оборудованы десятками газовых хроматографов, связанных со специализированными ЭВМ для оперативного контроля и управления производственными процессами. [c.10]

    Потери в-ва в препаративных колоннах малы, что позволяет широко использ. ПХ для разделения небольших кол-в сложных синт. и прир. смесей. Газовая ПХ использ. для получ. чистых углеводородов, спиртов, карбоновых к-т и др. орг. соед. (в т. ч. хлорсодержащих), жидкостная — для получ. лек. ср-в, полимеров с узким молекулярно-массовым распределением, аминокислот, белков и др. вСакоды некий К. И., Волков С. А., Препаративная газовая хроматография. М., 1972. К. И. Сакодынский. ХРОМАТОГРАФИЯ ПРОМЫШЛЕННАЯ, включает разработку и примен. хроматографич. методов и аппаратуры (пром. хроматографов) для контроля и автоматизации производств. процессов и науч. исследований. В отличие от лаб. хроматографов промышленные могут работать в автоматич. режиме во взрывоопасных условиях непрерывно в течение [c.669]

    Четырехканальная система обработки данных Виста-40Ь фирмы Varian (США) позволяет обрабатывать данные любых типов хроматографов и автоматизировать их работу одновременно. Система имеет достаточно большую оперативную память и дополнительную встроенную память на 2-х плоских дисках по 90 К каждый. Это позволяет проводить вычисление дрейфа нулевой линии и перепостроение хроматограмм без дрейфа нулевой 1инии. Система имеет также встроенный двухканальны й графопостроитель. С целью полной автоматизации процесса хроматографического анализа система Виста-401 может объединяться с четырьмя газовыми или жидкостными хроматографами, причем и газовые и жидкостные хроматографы могут объединяться в единой системе с Виста-401 . [c.388]

    СакодынскиЗ К. И., Волков С. А., Препаративная газовая хроматография. М., 1972. К. И. СакодынааА ХРОМАТОГРАФИЯ ПРОМЫШЛЕННАЯ, включает раэ-работку и примен. хроматографич. методов и аппаратуры (пром. хроматографов) для контроля и автоматизации производств. процессов и науч. исследований. В отличие от лаб. хроматографов промьппленные могут работать в автоматич режиме во взрывоопасных условиях непрерывно в течение [c.669]

    При внедрении автоматизации не следует пренебрегать процессами разделения. Так, в хроматографии применяется устройство, которое, облегчает разделение составляющих путем автоматической циркуляции элюанта через хроматографическую колонку. В газовых хроматографах типа Autoprep отдельные элюанты направляются в соответствующие трубки или ловушки и накапливаются в них. Повторное разделение одной и той же исходной смеси позволяет в конце концов получить достаточное количество каждого компонента. Разделенные вещества используют для последующих аналитических исследований (например, ИК-спектроскопия или ЯМР), либо сохраняют в виде чистых веществ для последующего использования в процессах синтеза. [c.545]

    Хроматография газов является одним из новейших наиболее замечательных достижений аналитической химии. За последнее десятилетие газовая хроматография из лабораторной новинки превратилась в важнейпшй аналитический метод. С каждым годом метод газовой хроматографии находит все более широкое применение в промышленности, для анализа сложных смесей углеводородов и других органических соединений. Такие характерные особенности хроматографического анализа газов, как высокая степень разделения, возможность работы с малым количеством исследуемого продукта, относительная простота аппаратуры, легкость и быстрота проведения операций, возможность автоматизации процесса разделения и универсальность метода, делают его совершенно незаменимым при анализе сложных смесей. [c.157]

    Возможности автоматизации процессов в указанных отраслях промышленности в значительной степени определяются уровнем аналитической химии газов, летучих жидкостей и других веществ. В последнее время для анализа многокомпонентных смесей газов, жидкосте и паров широкое развитие получили методы газовой хроматографии и автоматические лабораторные и промышленные приборы, оспованные на этих методах. [c.5]

    Для газо-жидкостноп распределительной хроматографии применяют специальную аппаратуру, так же как и для адсорбционной хрохматографии газов, что позволяет проводить как качественный, так и количественный анализ. Приборы — хроматографы обеспечивают автоматизацию процесса анализа, например, прп газовом каротаже в нефтяной промышленности, при непрерывном анализе парафиновых углеводородов, при определении суммы всех горючих газов и их раздельном определении, при анализе нефтяных газов. Осуществляется непрерывный автохлгатический контроль и экспресс-анализ. При поточных процессах в промышленности осуществляется автоматический многокомпонентный анализ. Методы газовой хроматографии позволяют определять микро-количества п даже следы различных органических веществ, например при меси бензола и циклогексанола в толуоле и циклогек-сане, примесь метилового спирта в воде, изопропилового спирта в бензоле. В 99%-ном хлорэтане можно таким путем обнаружить примеси углеводородов и галоидонроизводных. Можно определять очень малые количества метана, окиси углерода, азота и кислорода в чистом этилене. С другой стороны, методы газовой хроматографии позволяют разделять большие количества веществ непрерывным процессом, нанример получать чистый ацетилен пз газовых смесей, содержащих мало ацетилена (метод непрерывной газовой хроматографии). Газовые хроматографы с программным управлением получили применение нри препаративном разделении смесей различных органических соединений. Их колонки обеспечивают высокую производительность, что очень важно при разделениях сложных по составу смесей углеводородов и др. Высокотемпературная хроматография позволяет при 500—600° С осуществлять программированное изменение температуры. [c.198]

    Развитие препаративной газовой хроматографии происходило параллельно и на основе развития аналитической газовой хроматографии, когда, с одной стороны, возникла настоятельная необходимость в получении множества индивидуальных соединений достаточно высокой степени чистоты, а с другой стороны, выяснились ограниченные возможности таких распространенных методов, как дистилляция, экстракция, кристаллизация и т. д. Первоначально препаративное направление развилось именно как дополнение к этим общепризнанным методам. Очень быстро выяснились и достоинства, и ограничения метода препаративной газовой хроматографии. К числу достоинств относятся универсальность, обеспечение высокой селективности и эффективности разделения, возможности выделения одного или нескольких компонентов из сложных смесей с достижением за один цикл высоких степеней обогащения, простота процесса и возможность его полной автоматизации. К числу недостатков относятся сравнительно низкая удельная производительность и трудности улавливания веществ из газового потока. Препаративная хроматография применяется в настоящее время главным образом как лабораторный метод разделения веществ, и поэтому ее преимущества бесспорны, а недостатки не столь существенно важны. Следует ожидать, что препаративный хроматограф станет такой же неотъемлемой принадлежностью химических лабораторий, как аналитический газовый хроматограф в настоящее время и ректификационная колонка в прошлом. [c.5]


Смотреть страницы где упоминается термин Автоматизация процессов газовой хроматографии: [c.31]    [c.187]    [c.196]    [c.8]   
Смотреть главы в:

Приборы для хроматографии -> Автоматизация процессов газовой хроматографии




ПОИСК





Смотрите так же термины и статьи:

Автоматизация процессов

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2025 chem21.info Реклама на сайте