Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гель-проникающая хроматография хроматография полимеров

    Детальное обсуждение достоинств различных методов, используемых для фракционирования полимеров, выходит за рамки данной книги. Большинство этих методов достаточно сложно и требует длительного времени, причем число получаемых при разделении фракций в значительной степени зависит от продолжительности фракционирования. Следует различать препаративное фракционирование, когда осу-щ,ествляется разделение полимера на фракции с последующим определением молекулярной массы каждой фракции, и аналитическое фракционирование, при котором определяется молекулярно-массовое распределение без выделения каждой отдельной фракции. В первой группе методов следует упомянуть новую быструю методику фракционирования с помощью гель-проникающей хроматографии. В этом методе разделения используется хроматографическая колонка, в которой в качестве стационарной фазы применяют пористый набухший полимер сетчатого строения. По мере прохождения полимерного раствора по колонке молекулы полимера диффундируют через гель в соответствии с их размерами. Молекулы небольшой длины глубоко проникают в гель, и, следовательно, для их прохождения через колонку тре- [c.239]


    Физические основы этого метода очень просты и наглядны. Исследуемый раствор полимера протекает через колонку, наполненную пористым сорбентом. Разделение смесей компонентов основано на распределении определенного компонента между подвижной (текущий растворитель) и неподвижной (растворитель в порах) фазами. Таким образом, определенне ММР методом гель-проникающей хроматографии основано на разной способности макромолекул проникать в поры гранул геля, отсюда и принятое название метода — гель-проникающая хроматография. [c.206]

    Молекулярно-ситовая хроматография. При данном виде хроматографии используется способность материалов с контролируемой пористостью сортировать и разделять компоненты смеси в соответствии с размерами и формой их молекул. Для осуществления процесса гель-хроматографии используются гели поперечно-емкостного декстрана (сефадексы и сефакрилы), поперечно-сшитые полиакриламидные гранулы (биогели), агарозные гели с выраженными в них цепями акриламидного полимера (ультрагели) и более жесткие поперечно-сшитые агарозы (СЬ-агарозы и сефакрилы-8), с помощью которых можно быстро разделить макромолекулы в соответствии с их размером. Степень удерживания растворенного вещества на колонке зависит от его способности проникать в поры геля. Поэтому при гель-фильтрации сначала выходят высокомолекулярные вещества, а затем вешества в порядке убывания их моле- [c.55]

    Для определения ММР жидких каучуков пригодны методы осадительной или элюентной хроматографии в различных вариантах. Весьма перспективным методом для исследования ММР полимеров с функциональными группами является гель-проникаю-щая хроматография с использованием жидкостных хроматографов различной конструкции [61]. [c.434]

    Характеристика материала. ПММА представлял собой коммерческий материал, плексиглас RV 811, производимый фирмой Rohm and Haas Со. Этот полимер был специально выбран вследствие его широкого использования в качестве акрилового термопласта. Полимер анализировали методом гель-проника-ющей хроматографии. Молекулярные массы, определенные с помощью калибровки по полистиролу, указывают на то, что среднемассовая молекулярная масса составляет 1,5-105, [c.513]

    Хроматография на проницаемом геле позволяет разделить молекулы в соответствий с их размерами. Такой метод разделения осуществляется на хроматографической колонке, в которой в качестве неподвижной фазы использован набухший в растворителе полимерный гель с различными размерами пор степень проницаемости набухшего полимерного геля изменяется на много порядков. В процессе прохождения жидкой фазы, содержащей полимер, сквозь гель макромолекулы диффундируют внутрь тех частиц, которые не создают механических препятствий диффузии молекул. Меньшие молекулы проникают в гель более глубоКо и удерживаются в порах в течение более длительного времени по сравнению с более крупными молекулами, которые проходят через колонку быстрее.- Такой хроматограф калибруется по узкой фракции с известным молекулярным весом (молекулярный вес такой фракции определяется каким-либо абсолютным методом). [c.26]


    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Более подробное рассмотрение студней, возникающих при синтезе ионообменных смол, выходит за пределы задач настоящей книги. Мы кратко коснемся этого вопроса еще раз в связи с рассмотрением метода гель-проникаю-щей хроматографии, основанного на различии в проницаемости студней для молекул разного размера и позволяющего разделить полимер по молекулярному весу. [c.239]

    Для объяснения процессов, происходящих в гранулах геля, был предложен ряд гипотез подробно они будут рассмотрены в гл. 1И. Здесь же мы лишь констатируем следующее смесь веществ можно разделить по молекулярным весам на слое гранулированного геля соответствующей пористости. Не подлежит сомнению, что это хроматографический процесс, поскольку растворенные вещества проникают в неподвижную фазу, в результате чего смесь разделяется на компоненты. В настоящее время существует в основном лишь два способа подобрать термин для нового хроматографического метода для этого используют либо применяющийся носитель (например, хроматография на бумаге), либо процесс, который, как полагают, лежит в основе разделения (например, распределительная хроматография). В соответствии с этим метод разделения ионов на заряженном полимере можно назвать либо хроматографией на ионообменных смолах, либо ионообменной хроматографией. То же относится и к обсуждаемому здесь методу. В табл. 1 приведены все предложенные для него названия, каждое из которых имеет как преимущества, так и недостатки. [c.20]

    Основной принцип гелевой хроматографии состоит в использовании различной способности полимерных молекул неодинаковых размеров проникать внутрь набухших гелевых зерен, образованных из полимерных сеток и применяемых в качестве сорбента для заполнения хроматографических колонок. Гели подбираются таким образом, чтобы исключить взаимодействие их матриц с полимером- [c.81]

    Разделение органических веществ и полимеров методом жидкостной ситовой хроматографии (ЖСХ) основано на различной способности молекул этих веществ проникать в матрицу геля или в поры молекулярных сит (пористых адсорбентов). Глубина проникновения молекул в основном зависит от их размеров и конформации. Большие макромолекулы, размер которых больше входных отверстий пор, вообще не способны проникнуть в поры, могут диффундировать лишь в зазоры между частицами пористого твердого тела и поэтому выходят из колонки раньше. Макромолекулы с размерами, меньшими входных отверстий пор, способны проникнуть в той или иной степени в эти поры. Непрерывно движущийся через колонку поток элюента снова вытесняет из объема пор эти макромолекулы [1—4]. [c.425]

    Пористость и внутренняя поверхность целлюлозы может быть определена при изучении проникновения (по типу гель-проника-ющей хроматографии) различных полимерных молекул Причем, если используют серию полимеров с увеличивающейся молекулярной массой (например, декстраны, полиэтиленгликоли), то может быть получено распределение пор по размерам Так, для хлопкового волокна подобные измерения показали, что примерно 75% общего объема пор (0,3 мл на 1 г сухого волокна) занимают поры диаметром 20 А Характерно, что в сухом хлопковом волокне общий объем пор меньще, чем во влажном Делигнифицирован-ная древесная целлюлоза имеет средний размер пор в 2-4 раза превыщаюцщй размер пор хлопковой целлюлозы [11] (специфика определения размера поверхности целлюлозы в случае ферментативного гидролиза будет обсуждена в разделе 1 2) [c.15]


    Смеси с широким молекулярновесовым распределением. Гель-проникающая хроматография широко используется для анализа полимерных добавок и полимерных экстрактов. На рис. 10.18 показана хроматограмма смеси экстракта полиэтилена, включающая антиоксидант и агенты скольжения, только некоторые из этих соединений можно определять методом газовой хроматографии. Однако реальной необходимостью является разделение и определение веществ в полимерных экстрактах. При проведении такого анализа в ГХ необходимо предварительное разделение, а иногда получение производных. С помощью ГПХ вся смесь анализируется за 2 ч без всякого предшествующего разделения. Гель-проникаю-щая хроматограмма обеспечивает профиль всего экстракта, в который входят низкомолекулярный полимер и добавки. Это обеспечивает прямой анализ соединений, экстрагируемых из полиэтиленовой пленки (рис. 10.19). [c.265]

    Разделение масел. Нет общепринятой и обязательной схемы для анализа масел. В первом приближении эта схема включает определение гетероэлементов, инфракрасную спектроскопию, вязкость при двух температурах (вязкостно-температурную характеристику), температуру вспышки, анализ структурно-группового состава и содержание воды, эмульгируемость и вспенивае-мость. В зависимости от вида масла, наличия и концентрации присадок и т. д., масла разделяют методами разгонки, диализа, жидкостной хроматографии или комбинацией этих методов. Присадки, которые могут улетучиться, улавливают отдельно. Фракции масла анализируют с помощью ИК- или ЯМР-спектроскопии, газовой хроматографии или подвергают элементному анализу. Если присутствуют низкокипящие компоненты, их отгоняют, используя часть исследуемого образца и анализируют с помощью газовой хроматографии низкокипящие компоненты удаляют и в тех случаях, если они мешают диализу или хроматографии. Спектры присадок оценивают путем сравнения с имеющимися эталонными спектрами наиболее широко применяемых товарных присадок (атлас Садтлера). Молекулярно-массовое распределение полимеров может быть определено с помощью гель-проникаю-щей хроматографии (ГПХ) при высоком давлении. [c.237]

    Нейтрализованные гумусовые кислоты растворяли в 2М растворе хлористого натрия и пробы, содержащие 3,33 мг/мл каждого образца, разделяли на колонке с сефадексом дистиллированной водой. Разделение проводили на колонках длиной 32 см (сефадекс G-25), 42 см (сефадекс G-50) и 52 см (сефадекс G-100), диаметр колонки во всех случаях равнялся 4,1 см [30]. Во всех случаях достигали разделения на две основные фракции а и б, окрашенные в коричневый цвет. На сефадексе G-25 выделяли третью фракцию, меньшую по размерам, желтовато-коричневого цвета. Фракции а и б после повторного разделения исходной пробы упаривали до 20—30 мл при температуре ниже 45 °С. Фракции подкисляли 0,2— 0,3 мл 5 н. раствора НС1, после чего проводили центрифугирование. Осадки отмывали дваз сды порциями по 10 мл 0,1 н. НС1. Гумусовые кислоты высушивали под вакуумом и хранили при, комнатной температуре. Пробы высушенных и измельченных гумусовых фракций растворяли в NaOH, растворы доводили до рН=7,0 и записывали спектры поглощения. Коэффициенты экстинкции рассчитывали для растворов с концентрацией 1,0 мг/мл и по ним получали информацию о молекулярной массе. Аналогичные исследования, в ходе которых в качестве элюента использовали растворы солей, проведены также в работах [35—38]. Хотя гель-проника-ющая хроматография на сефадексах и других типах гелей широко используется для фракционирования и характеристики сложных природных полимеров, необходима разработка более эффективных систем фракционирования гумусовых кислот, чтобы достаточно глубоко изучить свойства гумусовых кислот и фульвоколлоидов в почве. [c.279]

    Важно подчеркнуть, что в большинстве случаев чистоту полимеров, о которых сообщается в литературе, не определяли достаточно тщательно такими методами, как гель-проникаю-щая хроматография (ГПХ), жидкостная хроматография высокого давления (ЖХВД) и тонкослойная хроматография (ТСХ). Поскольку ни реакции полимеризации, ни обсуждаемые здесь полимераналогичные реакции, не являются количественными. [c.76]

    Разновидность хроматографического метода, в котором роль неподвижной фазы играет макропористый сорбент, адсорбционно инертный по отношению к молекулам хроматографируемого веш,е-ства, называется гель-проникаюш ей хроматографией, если размеры пор соизмеримы с размерами молекул. Название метода сложилось исторически и недостаточно полно отражает его сущность. Это объясняется тем, что на первых порах (60-е годы) в качестве сорбента использовали только набухающие гели — декстрановые для разделения белков и нолистирольные для анализа полимеров [1, 2]. Они представляют собой трехмерные полимерные сетчатые структуры (рис. HI.1), внутрь которых могут с определенной вероятностью проникать различные макромолекулы. Эта вероятность зависит от соотношения размеров макромолекул и ячеек сетки, а скорость проникновения в гель определяется диффузионной подвижностью макромолекул. Для малых макромолекул она выше, чем для больших. Очень большие молекулы не проникают внутрь геля, а очень малые попадают туда с вероятностью, близкой к единице. [c.81]

    Разновидностью метода фракционирования на колонке является гель-хроматография [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью чем чаще сетка, тем меньше критическое значение молекулярной массы. [c.83]

    Таким образом, при проведении хроматографических экспериментов с макромолекулами на набухающих гелях следует учитывать весь комплекс сопутствующих явлений. Сюда входят степень совместимости полимера с гелем, возможность адсорбционного воздействия между ними, набухаемость как геля, так и макромолекул в условиях проведения опыта (характеризуемая константами д и 5(1,2) и РЯД менее общих, но существенных явлений, например таких, как гидратация геля в водных растворах или ассоциация макромолекул друг с другом и с молекулами растворителя. Поэтому интерпретацию данных хроматографического эксперимента следует проводить только при тщательном учете всех перечисленных факторов, влияющих на его результат. В частности, только при соблюдении условий истинной ГПХ можно пользоваться универсальной калибровкой хроматографа. В противном случае она будет разной для различных полимеров, растворителей и условий опыта. В качестве примера можно привести результаты, полученные [68] на полиакриломорфолиновых гелях (энзакрил К1 и К2) (рис. П1.30, 111.31). 1 ак видно, олигосахариды более активно проникают в гель, чем ПЭГ с той же молекулярной массой, а различная набухаемость геля в воде и хлороформе является одной из причин нарушения универсальной калибровки (см. также [87]). [c.129]

    Относительно недавно в хроматографии начали использовать ионообменные полимеры типа оксиалкилметакрилатного геля с макропористой гидрофильной матрицей (ср. гл. 7, рис. 7.4 и гл. 6, разд. 6.2.4). Эти иониты (карбоксиметильные, фосфо-, сульфо- и диэтиламиноэтильные производные) химически устойчивы, в их поры могут проникать и при этом не претерпевать денатурирования макромолекулярные биополимеры. Поскольку эти иониты достаточно прочны и хорошо проницаемы для жидкостей, их можно применять в жидкостной хроматографии при высоком давлении даже для разделения биополимеров [123а]. [c.234]


Смотреть страницы где упоминается термин Гель-проникающая хроматография хроматография полимеров: [c.166]    [c.46]    [c.103]    [c.12]    [c.12]    [c.320]   
Хроматография полимеров (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гель-проникающая хроматография

Гель-проникающая хроматография полимеров

Гель-проникающая хроматография полимеров

Гель-хроматография

Гель-хроматография гель-проникающая хроматография

Исследование смеси линейных и разветвленных полимеров методами гель-проникающей и тонкослойной хроматографии

Особенности гель-проникающей хроматографии линейных гибкоцепных полимеров на набухающих макропористых сорбентах

Полимеры гель-проникающая хроматография на набухающих сорбентах

Сочетание гель-проникающей хроматографии с другими физико-химическими методами для анализа разветвленных и химически неоднородных полимеров



© 2025 chem21.info Реклама на сайте