Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модель с переносом заряда

    Модели переноса заряда на границе электрод — электролит [c.57]

    Рассмотрим, имеются ли в биоструктурах возможности для реализации сформулированных выше условий осуществления данной модели переноса зарядов. [c.83]

    Частично учесть этот неполный перенос заряда в рамках модели сферических ионов можно, вводя представление о взаимной поляризации ионов (так называемую модель молекулы с поляризующимися ионами). В молекуле каждый из ионов под влиянием другого поляризуется, и в каждом из них возникнет индуцированный дипольный момент, величина которого зависит от поляризуемости иона a (рис. 34). Модель молекулы с поляризующимися ионами успешно применялась для расчета свойств двухатомных молекул галогенидов  [c.91]


    В отличие от полного (термодинамического) свободный заряд поверхности е зависит от той модели, которая приписывается двойному электрическому слою. Предполагая, что специфическая адсорбция на идеально-поляризуемом электроде не сопровождается частичным переносом заряда (модельное допущение), фактически приравнивают свободный и полный заряды, т. е. Q = е. Для электрода, обратимо адсорбирующего водород, связь между полным и свободным зарядами вытекает из соотношений (14.5) и (14.6)  [c.80]

    В принятой в настоящее время модели двойного слоя не учитывается частичный перенос заряда при специфической адсорбции ионов. Иначе говоря, предполагается, что специфически адсорбированные ионы сохраняют свой целочисленный заряд, характерный для объема раствора (в уравнении (VI 1.37) z — целое число). В действительности это предположение не соблюдается, когда специфическая адсорбция ионов обусловлена образованием ковалентной связи между этими ионами и поверхностью металла. Если специфическая адсорбция ионов сопровождается частичным переносом заряда, то определяемая по уравнению Липпмана (VI 1.20) величина q представляет собой не истинный (свободный) заряд поверхности металла, а характеризует так называемый полный (термодинамический) заряд электрода. Полный заряд электрода можно определить как количество электричества, которое нужно подвести к электроду при увеличении его поверхности на единицу для того, чтобы разность потенциалов на границе электрод — раствор осталась постоянной при постоянных химических потенциалах всех компонентов раствора и металлической фазы. [c.165]

    Обычные электрохимические методы изучения двойного слоя не позволяют однозначно выделить из экспериментально определяемого полного заряда д свободный заряд поверхности электрода. Именно поэтому принятая в настоящее время модель двойного электрического слоя исходит из допущения, что на электродах типа ртути, свинца и висмута д=дсв- С другой стороны, на электродах из металлов платиновой группы процессы частичного или даже полного разряда ионов при их адсорбции нельзя не учитывать. Перенос заряда доказывают данные по кинетике адсорбции и обмена ионов. Так. например, адсорбционное равновесие в растворах неорганических солей на платиновом электроде устанавливается за время от нескольких минут [c.197]


    На базе уравнения (2.4) развит целый ряд моделей образования химической связи. В простейшем случае постулируется, что перенос электронов с атома на атом происходит до тех пор, пока Хм и XL не станут равными. Более сложные модели рассматривают энергию связи как сумму вкладов ковалентного связывания, энергии переноса заряда и кулоновского взаимодействия, представляя ее в виде функции от q  [c.58]

    Заключая краткое обсуждение различных подходов к оценке реакционной способности ароматических соединений при электрофильном замещении, можно отметить, что они непосредственно связаны с механизмом реакции и соответствуют различным моделям переходного состояния. Предположение, что на ориентацию атакующего реагента непосредственно влияет распределение электронной плотности, означает, что переходное состояние очень близко к исходному и что ориентация в значительной степени определяется электростатическими силами. Корреляция реакционной способности с граничной я-электронной плотностью предполагает взаимодействие с переносом заряда между реагентом и ароматической молекулой, в которой ароматический характер в значительной мере сохранен. Наконец, корреляция реакционной способности со стабильностью а-комплекса и энергией локализации означает, что переходное состояние не имеет ароматического характера и этим сильно отличается от исходного. Имеющиеся экспериментальные данные показывают, что в большинстве случаев реализуется третья модель переходного состояния, и анализ реакционной способности, выполненный на ее основе, дает наиболее надежные результаты. [c.41]

    Высокочастотная дуга полуокружности связана с присутствием оксидной пленки на поверхности модели и изменением во времени ее емкости и сопротивления. Величина емкости второй полуокружности типичная дпя границы раздела металл-раствор. Сопротивление переносу зарядов уменьшается во времени, указывая на ускорение кинетики реакции растворе-18 [c.18]

    При дальнейшем анализе механохимических явлений будет рассматриваться преимущественно влияние механических воздействий на электрохимические реакции, поскольку тем самым решаются и другие задачи с одной стороны, обсуждаемые кинетические уравнения электрохимических реакций преобразуются для описания химических реакций (т. е. протекающих без переноса заряда) путем простой замены величины электрохимического сродства величиной химического сродства, а с другой стороны, например, химическая коррозия при высокотемпературном окислении металлов по теории Вагнера рассматривается как электрохимическая реакция на модели гальванического элемента. [c.12]

    В действительности переноса целочисленного заряда и образования чисто ионной связи никогда не наблюдается. Даже в молекулах щелочных галогенидов эта величина не превышает -0,85. Поэтому в рамках ионной модели возникают различные поправки на поляризацию ионов и другие искажающие факторы, а тогда, когда перенос заряда составляет еще меньшие величины, то говорят просто об образовании полярной связи. В этих случаях отдельным атомам в молекуле на основе тех или иных условных критериев подчас ставят в соответствие дробные заряды. Так, для молекулы СО в основном состоянии при малых межъядерных расстояниях (близких к равновесному) можно качественно записать перераспределение заряда с помощью выражения С 0 +, тогда как при расстояниях, несколько больших равновесного, распределение заряда становится иным С 0 " и, наконец, диссоциирует молекула на нейтральные атомы С и О. [c.466]

    Ратайчак, Орвилл-Томас И Pao [87], используя часть показанных на рис. 11 экспериментальных данных, также коррелировали АЯ с усилением v h в ИК-спектре. Корреляцию искали в заранее принятом (из модели переноса заряда) виде [c.147]

    Поверхностный потенциал, наблюдаемый при адсорбции СО на пленках меди, серебра и золота, оказывается положительным [18] в отличие от ПП на пленках переходных металлов. При адсорбции N2 на меди поверхностный потенциал также величина положительная [74]. Теплоты адсорбции в таких системах неизменно малы, и обычно предполагается, что здесь имеет место физическая адсорбция. В самом деле, положительные значения ПИ на мета.ллах характерны для физической адсорбции, а взаимодействие ксенон — лметалл сопровождается довольно большими изменениями характеристик. В абсолютно всех изученных случаях не вызывающей сомнений физической адсорбции поверхностный потенциал имел положите.льное значение. Это явление рассматривается [74] в модели переноса заряда без явлений резонанса связей, развитой Мулликеном [78]. Одпако расчет [19] говорит о том, что положительные значения ПП (по крайней мере, при адсорбции благородных газов) д[огут равным образом быть результатом поляризации. [c.162]


    На основе экспериментов в более простых, но аналогичных по свойствам системах была предложена модель переноса зарядов по ССИВС. Наиболее существенный ее элемент перенос электрона сопровождается встречным кооперативным сдвигом протонов и может происходить попеременно в двух направлениях ССИВС. Для реализации этих особенностей оказались необходимыми дупликация и вращательная симметрия надмолекулярных структур, хиральность составляющих их элемен-тов. Следствием использования данного механизма переноса энергии должна быть поочередность работы субструктур. [c.8]

    ССИВС как каналы передачи энергии в биоструктурах модель переноса зарядов [c.79]

    Модель переноса зарядов по ССИВС, опубликованная нами в целом ряде работ [9—12, 19], можно представить следующим образом. Мы задаем ССИВС, с одной стороны которой присоединен водородной связью донор заряда (В), а с другой, также через водородную связь — акцептор заряда (А). В качестве доноров зарядов могут быть различные субстраты, молекула НгО в фотореакционном цен е, молекулы АТР, неорганические ионы, а акцепторами —также различные субстраты, молекулы кислорода, ионы, АОР+Рн и т. д. Механизм, учитывающий приведенные выше экспериментальные данные и обсуждавшиеся теоретические соображения, включает перенос электрона от донора к акцептору А (начальное состояние) [c.80]

    Модель переноса зарядов по ССИВС и особенности надмолекулярных биоструктур [c.83]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]

    При высоких pH переход ацильной группы 0->-М к имидазо-лид-аниону происходит по нуклеофильному механизму. Последующий гидролиз ацилимидазольного промежуточного производного происходит благодаря тому, что скорость гидролиза пре-выщает скорость термодинамически невыгодного перехода N- 0. Такая модель действительно имеет определенную аналогию с действием сериновых протеаз, хотя механизмы сходны лищь при нейтральных pH. Однако введение карбоксильной группы приводит к более точной аналогии системы с переносом зарядов  [c.227]

    Тем не менее модель Роджерса и Брюса поддерживает гипотезу переноса зарядов, поскольку имеются данные о существенном ускорении реакции в случае использования почти безводного ацетоинтрила или толуола. В этих условиях система водородных связей замкнута внутри молекулы и не обменивается со средой, т. е. возможна реализация механизма при нейтральных pH атака молекулой воды, сопровождающаяся обп1,еосновным катализом, причем диполярное переходное состояние образуется из нейтрального основного состояния. В ацетонитриле это могло бы произойти только в ирисутствии находящегося рядом карбокси-аниона. [c.228]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    Учесть этот неполный перенос заряда в рамках классических (неквантовых) представлений частично можно, введя представление о взаимной поляризации ионов (так называемую модель молекулы с поляризующимися ионами). В молекуле каждый из ионов под влиянием другого поляризуется, и в каждом из них возникает индуцированный диполь (рис. 67), величина которого зависит от поляризуемости иона а,. Оба индуцированных дипольных момента ионов ii и имеют одно направление, противоположное направлению основного дипольного момента, создаваемого зарядами ионов 1осн= г - Результирующий дипольный момент молекулы [c.163]

    Согласно модели резонанса двух состояний, изложенной в предыдущем разделе, вклад в энергию связи от переноса заряда зависит от потенциала ионизации В и сродства к электрону АН. Р1меются противоречивые мнения о величине энергии переноса заряда в комплексах, однако она, по-видимому, растет пропорционально кулоновской энергии по мере увеличения силы комплекса. Коллман и Аллен [8] проанализировали результаты расчетов димера воды методом молекулярных орбиталей и нашли, что сумма энергий кулоновского притяжения и обменного отталкивания составляет —19 кДж-моль сумма энергии переноса заряда и поляризационной энергии (энергии, обусловленной поляризацией одной компоненты в поле другой компоненты) составляет —13 кДж моль , а дисперсионная энергия равна —6 кДж/моль , [c.370]

    Квантовохим. представления и методы начинают активно применяться при изучении высокомол. соед. В частности, созданы адекватные модели для описания высокой проводимости орг. полимеров, переноса заряда пс цепи полимера, а также ряда др. процессов. Методы К. х. используются в мол. биологии, напр, для расчета моделей биол. мембран, моделирования работы мышцы и др. Результаты квантовохим. расчетов совместно с данными, получаемыми методами теоретич. физики, начинают использовать в материаловедении для направленного создания материалов с заданными электрич. и магн. св-вами - сплавов, орг. полупроводников, композиц. материалов и др. [c.367]

    Учет трехмерного распределения электронной плотности р в пространстве декартовых координат л, у, г приводит к модели К.с., согласно к-рой атомные ядра погружены в непрерывно распределенный с плотностью р электронный заряд. Совр. прецизионный рентгеноструктурный анализ позволяет экспериментально изучать особенности ф-цин р(Х у, 2) и определять изменение электронной плотности атомов в кристалле в сравнении с электронной плотностью Ро валентно не связанных атомов, получаемой в результате кваитовохим. расчетов. Эти данные м. 6. полезны для установления областей локализации валентных и неподеленных электронных пар, для обнаружения переноса заряда и др. особенностей строения в-в с ковалентными связями, а также в-в, в к-рых направленные межатомные взаимод. отсутствуют. [c.532]

    Континуальная модель растворителя. Высоту барьера ПСЭ можно определить с меньшими вычислит, затратами на основе континуальной модели р-рителя. Обычно этот подход применяют к р-циям с переносом заряда в апротонных полярных средах, когда взаимод. среды и субстрата в осн. электростатическое. Р-ритель рассматривают как сплошной диэлектрич. континуум с диэлектрич. проницаемостью 5. В нем вырезают полость, в к-рую помещен реагирующий хим. субстрат (диэлектрич. проницаемость полости равна 1). Зарядовое распределение субстрата поляризует среду поле наведенной поляризации среды, в свою очередь, меняет зарядовое распределение субстрата. Результирующая поляризация среды Р(г) в точке пространства вне полости вместе с результирующим зарядовым распределением субстрата р(г) рассчитывается методом итераций. На каждой итерации электростатич. расчет Р(г) комбинируют с квантовохим. вычислением р(г). Этот метод расчета электростатич. составляющей сольватации наз. методом самосогласованного реакционного поля (метод ССРП). В простейших реализациях, если моделировать хим. [c.208]


Смотреть страницы где упоминается термин Модель с переносом заряда: [c.55]    [c.63]    [c.291]    [c.84]    [c.340]    [c.353]    [c.354]    [c.184]    [c.107]    [c.230]    [c.304]    [c.305]    [c.262]    [c.46]    [c.51]    [c.21]    [c.466]    [c.117]   
Хроматографическое разделение энантиомеров (1991) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Перенос заряда

Перенос электрона заряда модель



© 2025 chem21.info Реклама на сайте