Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение силикатных ионитов

    Степень несоответствия силикатных расплавов совершенным ионным растворам зависит от количественного соотношения между катионами первой и второй групп. Например, шлаки с малым содержанием катионов второй группы (т. е. главным образом Si) сравнительно удовлетворительно согласуются с теорией совершенных растворов, в соответствии с которой активность компонентов в расплаве равна произведению их ионных долей. Но уже при содержании кремнезема более 10% наблюдаются заметные отклонения в строении силикатных расплавов. [c.185]


    Ионно-координационная гипотеза А. А. Аппена основана на ионных представлениях о строении силикатных стекол. Автор исходит из сравнения физико-химических свойств силикатов в кристаллическом и стеклообразном состояниях. Для кристаллических силикатов, как и для других ионных соединений, характерно наличие координационной решетки, в которой каждый катион симметрично окружен анионами, а структура в целом слагается из координационных полиэдров. При недостатке кислорода силикаты об- [c.199]

    С )остом температуры синтеза исходного расплава в силикатном стекле снижается количество типов кремнекислородных группировок. Это происходит вследствие разрушения образовавшихся при твердофазовых реакциях группировок с повышенной долей ионных связей (островные, кольцевые, цепочные структуры) благодаря сдвигу равновесия в сторону образования более сложных и термодинамически более устойчивых комплексов слоистого и каркасного строения. [c.201]

    Задачей технологии силикатов является получение искусственным путем различных минералов или их смесей и изделий из них, а также стекол и изделий из них. Материалы и изделия, вырабатываемые силикатной промышленностью, обладают разнообразными ценными техническими свойствами. Свойства большинства силикатов обусловлены особым строением их молекул, основным структурным элементом которых является тетраэдрическая группа [3104] . Для этой структуры характерна высокая прочность связи между ионами ЗИ+ и О -, благодаря которой большинство силикатов обладают высокой твердостью и тугоплавкостью. Общими для большинства силикатов свойствами являются, кроме того, химическая устойчивость, огнеупорность, а также сравнительная дешевизна, благодаря доступности сырья. [c.351]

    Наиболее полно современным научным представлениям в области строения жидкостей отвечает ионная теория строения силикатных расплавов, разработанная О. А. Есиным и его школой. [c.184]

    Хорошо известно, что в водных силикатных растворах, возникающих при растворении кремнезема в щелочи, протекают процессы полимеризации и деполимеризации. Структура образующихся силикатных ионов, по мнению некоторых исследователей, определяется pH. Предлагается несколько способов осуществления полимеризации без учета влияния гидратации, при этом координационное число кремния по отношению к кислороду может быть равно 4 или 6. Мы не приводим структурные формулы этих соединений, поскольку они справедливы лишь для низкотемпературных условий. Внутреннее строение, состояние и свойства многокомпонентных растворов при повышенных температурах и давлениях существенно иные, чем в обычных условиях. Одной из основных закономерностей поведения растворенного вещества в водных растворах электролитов является его стремление к ассоциации при повышении параметров, что приводит к полимеризации. Возникающие при этом полисиликатные ионы имеют весьма сложное строение. Точные данные относительно их структуры и молекулярной массы в литературе отсутствуют. Отмечается лишь, что силикатные полианионы, имеющие в ядре нейтральный ЗЮг с кремнием в четверной координации, а на поверхности несущие заряды группы с 6 координированными атомами кремния, взаимодействуя с натрием, [c.125]


    Зависимость между строением силикатного ионита и его обменной емкостью по отношению к ионам различного размера [106] [c.128]

    Г. магматических, гидротермальных и гипер-генных процессов изучается преим. на базе представлений о св-вах ионов. Силикатные расплавы представляют собой ионно-электронные жидкости. Они содержат полимерные цепочки силикатных и алюмосиликатных анионов с упорядоченным строением. Геохим. специфика магм во многом определяется летучими компонентами-парами Н2О, СО , С1, Р и др. Водяные пары и Р способствуют де- [c.521]

    Синтез водорастворимых основных солей включает три основных стадии гидролиз солей алюминия, отмывка гидроксида алюминия от ионов маточного раствора и растворения его кислотой. Растворение гидроксида алюминия зависит от его морфологического строения. Установлено, что гидроксид алюминия в форме псевдобемита легко растворяется кислотой с образованием термодинамически устойчивых растворов основных солей. Гидроксид алюминия в форме байерита и гиббсита образует основные соли алюминия, но они со временем стареют, теряют растворимость и выпадают в осадок. В связи с этим синтез основных солей алюминия проводится главным образом на основе псевдобемита, который получают гидролизом солей алюминия при рН = 7- -9 и температуре реакционной смеси выше 80 °С. Раствор основной соли затем выпаривают на водяной бане при 60—90 °С в течение 10—20 ч. По указанной схеме синтеза проведен синтез основных солей алюминия с соотношением А1/Оз = 1/2, 1/1 и 2/1. Получаемые системы представляют собой прозрачный вязкий раствор, в котором массовая доля АЬОз составляет 7—9%. Гидроксид алюминия легко совмещается с силикатными и другими лиофиль-ными дисперсными системами. [c.83]

    В твердых диэлектриках ионного строения (например, силикатное стекло и др.) электропроводность обусловлена, главным образом, перемещением ионов, вырванных из решетки под влиянием теплового движения. [c.550]

    Другое строение воды в межслоевой области предложил Уокер [3]. В отличие от перечисленных авторов он считает, что вокруг обменного иона магния координируются 8 молекул воды при наличии 2 монослоев остальной воды, расположенных параллельно силикатным пакетам. [c.157]

    Предложенная модель строения жидких силикатов является в высшей степени идеализированной. На самом деле, угол 81 — О — 81 в силикатных анионах не обязательно должен точно соответствовать теоретическому значению. Распределение будет в какой-то степени беспорядочным. При данном составе в анионной структуре преобладает соответствующий дискретный ион, но он не является единственным. Между стехиометрическими составами, при которых предполагается наличие определенных анионов, расплав, возможно, [c.267]

    На рис. 1 иредставлепо строение силикатных ионов 810 и 8120 . Первый из них имеет четыре отрицательных заряда, второй — шесть. Характерным для силикатов является соединение таких анионов в более сложные системы. Кислород одного аниона связан с другими анионами, образуя кислородный мостик между атомами кремния. Таким путем образуются длинные цепочки, представляющие собой отдельный анион большого размера. Встречаются и циклические группировки, содержащие по три или шесть атомов кремния, связанных через атомы кислорода (рис. 2). [c.8]

    Строение силикатных расплавов. Поскольку кристаллические силикаты и алюминаты состоят в основном из решеток ионного типа, их расплавы также являются ионными. В первом приближении расплавы можно рассматривать как жидкости — диссоциированные электролиты, состоящие из ионов Са-+, Mg=+, Si +, 0 - и т. д., что объясняется наличием ковалентных связей. Степень ковалентности в расплавах больше, чем в кристаллах, при этом связи между анионами 0=- и катионами Ме+, Ме + имеют в основном ионный характер, а связи между О - и Si +, А1 +, Р + — смешанный, ионно-ковалентный, с различной долей этих типов связей. Катионы с большей долей ковалентной связи (З В +) образуют в расплавах комплексные, например кремнекислородные, анионы различной формы и размера, как это имеет место у кристаллических силикатов. Степень комплексообразования в расплаве зависит от атомарного отношения О Si, В расплаве SiOj атомарное отношение [c.99]

    Уоррен первым провел экспериментальным путем проверку теории каркасного строения силикатных стекол, применив рентгенографический метод к стеклам-из чистого кремнезема и борного ангидрида. По формулам Цернике и Принса им был вычислен ряд. структурных аранжировок, отвечающих предположительно возможным, правильным распределениям ионов кремния и кислорода в пространстве. Полученные результаты [c.175]

    Вопросу строения силикатных расплавов посвящено много исследований. Расплавы солей и, в частности, силикатные расплавы и расплавленные шлаки, плодотворно рассматриваются [341] с позиций теории совершенных ионных растворов, предложенной Темкиным [364], хотя она лучше применима к ультраосновным и, в пределе, не содержащим кремнезема (очевидно, точнее, комплексообразующих и полимерообразующих компонентов) металлургическим шлакам. Но с учетом отклонений от законов совершенных ионных растворов, в первую очередь в связи с полимерной природой силикатов, ею можно воспользоваться при рассмотрении основных и кислых шлаков и других подобных систем. Значительные отклонения от законов совершенных ионных растворов наблюдаются и в системе СаО — (SiOa) . Однако с достаточной степенью точности можно считать [341], что распл 1в силикатов, содержащий мономерный agSiOj, является нормальным ионным раствором. [c.95]


    Количественно полимерное строение силикатных стекол A.A. Аппен [5] учитывает (например, расчеты свойств) введением коэффициента связности кремнекислородного каркаса, который представляет собой отношение числа ионов (атомов) кремния к числу ионов (атомов) кислорода (табл. 6). [c.87]

    Однако в результате изучения обмена дейтерием между алюмо-силикатными катализаторами и двумя изомерными бутанами было сделано заключение о том, что кислота, от которой зависит каталитическая активность, является кислотой Льюиса [283]. (Денфорте предложил катализатор, вследствие особенностей своего строения Обладающий одновременно свойствами кислоты Льюиса и кислоты Бренстеда [284]). Следует предположить, что структурные изменения, которые становятся возможными благодаря присутствию двуокиси кремния, приводят к появлению атомов алюминия с электронными пробелами. Координационное число алюминия изменяется здесь от 4 до 6. Устойчивые комплексы карбоний-ионов можно представить следующим образом. [c.336]

    Минералы можно подразделить на три типа природные элементы, силикаты и не-силикатные соединения. Силикаты шире всего распространены в природе. Структурной основой этих миниралов являются силикатные тетраэдры 8104, которые путем обобществления атомов кислорода способны связываться друг с другом, образуя цепи, слои и каркасные структуры. Мы обсудили, каким образом макроскопические свойства некоторых силикатов, например способность к разрушению, отражают их молекулярное строение. Во многих минералах ионы 81 замещены ионами А1 , что приводит к образованию алюмосиликатов, к числу которых относятся полевые шпаты. Силикаты являются важными компонентами при получении стекла и цемента процессы получения этих веществ кратко рассматриваются в тексте главы. Однако силикаты в настоящее вре- [c.365]

    Основные положения о внутреннем строении стекол были высказаны впервые А. А. Лебедевым (1921), который на основании изучения процесса отжига и закалки стекол пришел к выводу о наличии в структуре силикатного стекла микрокристаллических образований. Кристаллитная гипотеза А. А. Лебедева исходит из предположения о наличии в структуре стекол каркаса из беспорядочно расположенных атомов или ионов, составляющего основную массу вещества. Этот каркас включает в себя участки, в которых степень упорядоченности постепенно возрастает, причем в структуре стекол появляются элементы упорядоченности, приближающиеся к кристаллическим структурам. Таким образом, теорией допускается непрерывный переход от кристаллических центров с неполным комплексом элементов симметрии к полностью неупорядоченной пространственной сетке. Последующие исследования О. К- Ботвинкина, К- Н. Воленкова, Е. А. Порай-Кощица и др. подтвердили такие представления и привели к дальнейшему развитию кристаллитной теории. [c.65]

    Такая запись отражает три основных фактора, определяющих поведение ионов в системе их молекулярное взаимодействие с окружающей средой ( lio), участие в тепловом движении (RT ln i) и взаимодействие с электрическим полем (гг-есрЫд). Вообще говоря, соотношение (VII—6) должно выполняться для всех ионов, присутствующих в системе. Однако иногда (при больших значениях lio) какие-либо ионы практически отсутствуют в одной из фаз или в обеих контактирующих фазах в последнем случае они присутствуют только на поверхности раздела фаз (поверхностная диссоциация, характерная для неорганических веществ сложного строения, например, силикатных и алюмосиликатных минералов). Кроме того, возможна такая поляризация поверхности, когда для одного из ионов из-за кинетических затруднений электрохимическое равновесие не устанавливается тогда разность потенциалов между фазами может быть изменена без изменения их состава приложением внешней разности потенциалов. [c.177]

    Деление анионов на структурный и основной типы представляет собой, конечно, лишь первое приближение в трактовке строения и свойств стекол. По мнению Евстропьева (1946), в стеклах падо учитывать также и влияние более отдаленных (чем непосредственно связанные) попов и поэтому рефракция кислорода в стекле является функцией зарядов и отстояний соседних ионов. Евстроньев связал рефракцию кислорода в стекле с энергией структурной сетки силикатных н боратных стекол. Для каждого типа стекла функция Ro = f U] имеет свой вид, но зависимость рефракции кислорода от части энергии структурной сетки стекла, приходящейся на один атом кислорода, т. е. от удельной энергии, оказалась прямолинейной, что чрезвычайно удобно для всякого рода расчетов и экстраполяций. Вноследствии аналогичную зависимость для фторидных стекол устаиовил Медведев (1960). [c.214]

    Многие силикатные минералы имеют тетраэдрическую решетчатую структуру, в которой некоторые тетраэдры 8104 заменены тетраэдрами А1О4. Структура этих минералов в известной мере напоминает структуру кварца, но в ней имеются дополнительные ионы, обычно ионы щелочных или щелочноземельных элементов, проникающие в крупные пустоты решетчатой структуры. Обычный полевой шпат (ортоклаз) КА131з08 может служить примером алюмосиликатного минерала тетраэдрического строения. Алюмосиликатная тетраэдрическая решетка (А131з08)оо простирается на весь кристалл, придавая ему почти такую же высокую твердость, как у кварца. [c.532]

    Обширный класс соединений с ионным строением составляют различные керамические материалы. Известно, что по отношению к ним (так же как и к неорганическим стеклам) адсорбционно-активной средой, заметно понижающей свободную поверхностную энергию и, соответственно, прочность, может служить вода, например, в вид влаги воздуха.В настоящее время установлено, чго адсорбционное понижение прочност ряда керамических материалов может вызываться при контакте с металлическими расплавами в той мере, в которой имеют место достаточно высокие значения работы адгезии и хорошее смачивание [23]. Так, образцы вакуумно-плотной алю-мооксидной керамики А-995 при изломе в расплаве олово — свинец — висмут (а также в чистых кадмии, висмуте и др.) обнаруживают падение прочности до 1,5 раза, причем ювенильная поверхность разрушения оказывается хорошо смоченной металлом. Значительное понижение прочности в расплаве показали также образцы магнезиально-силикатной керамики - - стеатита С-4А. [c.166]

    На протяжении многих лет ученых поражало практически полное сходство физических свойств многих силикатных минералов, несмотря на значительное различие химического состава. Однако углубленное изучение структуры химических соединений [21, 123] дало ключ к пониманию строения сотен силикатных минералов. Эти основные работы неоднократно и весьма подробно рассмотрены в литературе. В основе теории строения силикатов лежит представление о кислотных радикалах, тетраэдрических агрегатах типа (8104) и (А104) . Такие основные элементы структуры могут сочетаться с образованием структурных скелетов, с которыми соединены положительные ионы различных металлов, например натрия, калия, магния, кальция и железа. [c.117]

    Основываясь на концепциях Захариасена и Уоррена и логически их развивая, Дитцель в своих исследованиях применил те же принципы при изучений влияния строения стекла на ионные цветные индикаторы (см. Е. I, lie и ниже). Не только пространственные геометрические факторы, управляющие размещением катионов в анионном каркасе стекла, определяют его свойства, но главным образом здесь существенную роль играет сила электростатического поля посторонних катионов, если считать, что в силикатных стеклах главным образом существуют ионные связи . Каждый катион стремится войти в координацию с таким числом анионов кислорода, которое отвечает его собственному электростатическому заряду и его радиусу, и образовать группу ROn]. Определение силы поля в стеклах аналогично вычислению энергии структуры произведение ге/г (где г — валентность, е — электростатическая единица количества электричества, г — ионный радиус) или произведение ге/а (где а — расстояние между катионом и анионом) имеет в этой теории основное значение. С помощью этих величин и особенно величин силы притяжения (2zja ), расположенных в порядке возрастания числовых значений, Дитцель получил превосходную сводку физико-химических свойств рассмотренных им стекол, в зависимости от их строения. Гомогенные однофазные расплавы щелочных силикатных стекол были противопоставлены расплавам щелочноземельных силикатов с избытком кремнекислоты, имеющим тенденцию к расслоению. Этот факт, очевидно, обусловлен малой величиной притяжения между кислородом и их щелочными ионами [c.173]

    Согласно Дитцелю з, ионная структура стекла определяет также термическое расширение вплоть до интервала превращения и даже после него (см. ниже). Химическая стойкость против коррозии также диктуется строением стекла. Вообще говоря, коэффициент при низких температурах тем меньше, чем больше сила поля 2/д2 щелочного катиона. В кал1иевых силикатных стеклах расширение зависит от низкой силы связи между ионами калия и кислорода. Следовательно, катионы калия, находящиеся в каркасе более свободны и более подвержены колебаниям под действием тепловой энергии, чем катионы в силикатных стеклах, содержащих натрий и литий, структура которых сильнее связана электростатически.м притяжением. Дитцель подтвердил, что при высоких температурах коэффициент расширения натриево-силикатных стекол, при рассмотрении в зависимости от концентрации окиси натрия, перестает увеличиваться при содержании НагО выше 25 мол. %. Для калиевых стекол соответствующая предельная концентрация достигается при 20 мол. % КгО в литиевых же стеклах этот предел не достигается даже при 32 мол. % ЫгО. Эти предельные значения соответствуют стереометрическим условиям, которые характеризуются непрерывным разрыхлением каркаса и при указанных значениях — взаимным соприкосновением кислородных полиэдров катионов. Соответствующий низкотемпературный эффект цри этом исключается. Щелочная экстракция стекол также ограничена предельными значениями кон- [c.175]

    Несколько позже Уоррен и Лоринг в результате своих исследований рассчитали рентгенограммы для натриево-силикатных стекол. Согласно общему выводу, строение этих стекол вполне согласуется с теорией каркаса или пространственной связи. В то время как в структуре чистого силикатного стекла присутствуют только тетраэдры [8104] с характерным обобществлением анионов кислорода двумя соседними ионами кремния, связи в структуре натриево-аили,катных стекол распределены таким образом, что катионы натрия связаны с тем же числом анионов кислорода, причем каждый ион [c.176]

    Строение монтмориллонита отличается от идеальной структуры, показанной на рис. 142, за шщением алюминием кремния в тетраэдрических слоях и замещением алюминия в октаэдриче-С1и)м слое магнием и другими катионами. Введение ионов Mg + вместо АР+ п АГ + вместо 31 + приводит к появлению в силикатном слое отрицательного заряда. В монтмориллоните этот заряд нейтрализуется гидратированными катионами, находящимися в межсловном пространстве. Эти гидратированные катионы могут быть заменены в водных системах другими катионами. Фрипьят (1963) определял емкость катионного обмена через плотность электрического заряда, который составлял в среднем 1,4 электрона па 100 А2. [c.410]

    Как известно [4], основой образования стекла является окись кремния. Простейшее силикатное стекло состоит из неупорядоченно расположенных тетраэдров 8104 с областями более или менее упорядоченного строения. При переходе к многокомпонентным стеклам структура стекла меняется, причем это относится в первую очередь к пространственной решетке. При введении щелочного окисла, нанример КааО, ионы Казаполняют пустоты, имеющиеся в решетке. Однако пустоты начальной пространственной решетки заполняются при помощи только части введенных катионов натрия (около 70%), а остальные 30% идут на увеличение общего объема стекла. Если в состав стекла ввести вместо окиси натрия окись лития, то ионы имеющие меньший ионный радиус по сравнению с ионами натрия, все целиком размещаются в пустотах неупорядоченной решетки [5]. Таким образом, плотность стекла при введении иона Е возрастает. [c.19]

    Рассматриваемая модель согласуется с представлением о чисто катионной проводимости принимается, что все дискретные ионы слишком велики для заметного участия в переносе. Постоянство теплоты активации вязкого течения при изменении состава в интервале 50—10% М Оу объясняется тем, что не меняется тип присутствующих силикатных анионов строение любого из них определяется наличием кольца SiaOg , и все они имеют одинаковую площадь поперечного сечения. При изменении состава в указанном направлении объем присутствующих в системе анионов постепенно увеличивается, причем длина самого крупного из них (при содержании М Оу, близком к 11%) приблизительно в семь раз больше, чем самого мелкого (50°/о Мд.Оу). Этому соответствует небольшое, но устойчивое повышение теплоты активации для вязкого течения. Исходя из модели дискретных анионов, в той области состава, в которой происходит превращение цепочечных ионов в кольцевые, т. е. вблизи 50% М Оу, можно ожидать появления изгиба на кривой [c.268]


Смотреть страницы где упоминается термин Строение силикатных ионитов: [c.169]    [c.176]    [c.86]    [c.214]    [c.37]    [c.505]    [c.175]    [c.179]    [c.877]    [c.320]    [c.315]    [c.178]   
Ионообменные смолы (1952) -- [ c.128 ]




ПОИСК







© 2025 chem21.info Реклама на сайте