Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства сернистого ангидрида и серного ангидрида

    СВОЙСТВА сернистого ангидрида, серного АНГИДРИДА, серной КИСЛОТЫ И олеума [c.11]

    Свойства сернистого и серного ангидрида [c.15]

    СВОЙСТВА СЕРНИСТОГО И СЕРНОГО АНГИДРИДА [c.20]

    Свойства сернистого ангидрида и серного ангидрида. Вследствие того, что состав этих двух газов различен, они обладают совершенно разными свойствами. [c.22]


    По химическим свойствам сернистый газ является ангидридом, хорошо растворимым в воде и образующим при этом сернистую кислоту, легко переходящую в серную кислоту  [c.194]

    Для предотвращения или уменьшения коррозии двигателей попадающими в масла продуктами сгорания сернистого топлива, содержащими сернистый и серный ангидриды, образующими при наличии влаги сернистую и особенно агрессивную серную кислоты, нашли применение присадки, обладающие свойствами нейтрализации этих кислот — нейтрализующие присадки. Такие присадки эффективны [c.185]

    По химическим свойствам сульфиды — нейтральные вещества, не реагирующие со щелочами, хорошо растворяющиеся в серной кислоте. Характерной особенностью их является способность да-, вать устойчивые комплексные соединения со многими веществами, такими, как хлорная ртуть, фтористый водород, фтористый бор, сернистый ангидрид и др. [c.37]

    Старение может быть естественным и искусственным. Старение материала или изделия в условиях хранения, транспортировки или эксплуатации называют естественным. Наиболее важными являются два вида естественного старения тепловое и атмосферное. При атмосферном старении основными факторами, вызывающими изменения свойств полимера, являются солнечный свет, тепло, влага и химически активные составляющие воздуха — кислород, озон, а в городах и индустриальных центрах — серный ангидрид, сернистый газ, оксиды азота, углеводороды, галоидсодержащие соединения и т. д. [c.126]

    СЕРНИСТЫЙ АНГИДРИД (диоксид серы) ЗОз — бесцветный газ с запахом зажженной спички, хорошо растворяется в воде, обладает восстановительными свойствами. С. а. используют в качестве сырья для производства серной кислоты, солей сернистой кислоты, для беления шерсти, шелка, соломы, как дезинфицирующее и антисептическое средство для обесцвечивания органических красителей, сахарных сиропов, кукурузной муки, при хранении и перевозке фруктов, в холодильном деле. С. а. токсичен, раздражает слизистую оболочку глаз, горла, носа, дыхательных путей. Получают С. а. сжиганием серы, сероводорода, обжигом пирита, как побочный продукт Б металлургических процессах, особенно Б цветной металлургии. [c.225]

    Сера. Природные соединения серы, ее свойства. Сероводород, получение и свойства. Сернистый газ. Его образование при горении серы и при обжиге железного колчедана. Сернистая кислота. Окисление сернистого газа в серный ангидрид. Контактный способ получения серной кислоты. Свойства серной кислоты и ее практическое значение. Соли серной кислоты. [c.198]


    Коррозионно-активной является атмосфера, содержащая сернистый газ, который окисляется до серного ангидрида, образующего при взаимодействии с влагой серную кислоту. На скорость атмосферной коррозии в значительной степени влияют состав и свойства пленок продуктов коррозии на поверхности металла. [c.30]

    Гл. 3 посвящена физико-химическим свойствам образующихся по газовому тракту соединений серы, в ней рассмотрено термодинамическое равновесие соединений серы при разных температурах и избытках воздуха и их последующая трансформация в кислоты и растворы, а также взаимодействие с другими компонентами дымовых газов. Много внимания уделено термодинамическим свойствам и исследованиям двухфазных газожидкостных систем, включающих в себя окислы серы и другие соединения. Поскольку многочисленные публикации о кинетике реакции доокисления сернистого газа в серный ангидрид достаточно противоречивы, в книге приводятся математический аппарат и определение порядка гомогенной реакции, а также физическая сущность и приемы расчета гетерогенного каталитического доокисления на конвективных поверхностях нагрева. [c.7]

    Наряду с высокими адсорбционными свойствами, активный уголь, как уже отмечалось, обладает в ряде случаев реакционной способностью. Каталитическую активность угля используют при получении фосгена из окиси углерода и хлора, соляной кислоты из хлора и воды, серной кислоты из кислорода, сернистого ангидрида, воздуха и воды. Активный уголь ускоряет реакцию полимеризации непредельных углеводородов и это свойство используют для удаления диоле-финов из бензина [52]. [c.299]

    Соли алкилсульфокислот, или алкилсульфонаты, с числом углеродных атомов от 10 до 20 обладают поверхностноактивными свойствами и моющим действием [4]. На основе этих продуктов небольшое количество моющих средств производится в ГДР, США и Советском Союзе. Непосредственно действием серной кислоты на парафиновые углеводороды не удается осуществить процесс сульфирования. Поэтому долгое время алкилсульфо-кислоты и их соли были малодоступными продуктами. В 1936 г. Ридом и Хопфом была открыта реакция сульфохлорирования, а в 1940 г. Платтом — реакция сульфоокисления парафиновых углеводородов. Это сделало возможным получение алкилсульфокислот и их сульфохлоридов. Реакция сульфохлорирования протекает в результате одновременного действия на парафиновые углеводороды сернистого ангидрида и хлора при ультрафиолетовом облучении  [c.252]

    Изложенный выше материал позволяет по-новому подойти к рассмотрению механизма активирующего действия сернистого газа, загрязняющего атмосферу промышлен 1ых районов и усиливающего коррозию. Очевидно, старые представления, которые сводили все дело к окислению сернистого газа до серного ангидрида с последующим образованием серной кислоты, которая растворяет защитные пленки и облегчает благодаря этому анодное растворение металлов, являются ограниченными, не отражающими истинный механизм процесса. На самом деле стимулирующее коррозию действие сернистого газа связано с появлением в системе, наряду с кислородом,, нового мощного катодного деполяризатора. При рассмотрении коррозии металлов в присутствии сернистого газа необходимо учитывать окислительные свойства этого га .а, его способность восстанавливаться на различных металлах и участвовать в процессе катодной деполяризации. [c.220]

    Общий характер этого процесса детально изучен [2581. Образцы смазочных масел нагревали до 204—260° С в атмосфере азота при энергичном перемешивании. После этого на поверхность масла в виде тонко дисперсного тумана распыливали разбавленную серную кислоту. Протекающая при этом чрезвычайно быстрая реакция представляет собой в основном окислительный процесс. Серная кислота почти количественно восстанавливается до сернистого ангидрида и образуются твердые отложения, содержащие 10—20% кислорода и 1—4% серы, по составу и физическим свойствам сходные с отложениями в поршневых канавках дизеля. [c.18]

    Изменение физико-химических свойств топлив после очистки серным ангидридом в растворе сернистого ангидрида [c.59]

    В качестве сырья для синтеза малозольной антиокислительной присадки ВНИИ НП-390 (В-390) были использованы остаточные масла МС-20 и ДС-11 из сернистых нефтей и МК-22 из бакинских. Масла сульфировали 105 о-ным олеумом (содержание свободного 50з 20%) или газообразным серным ангидридом. В последнем случае масло перед сульфированием для снижения вязкости растворяли в бензине, который по окончании сульфирования отгоняли. В сульфированном масле определяли общую кислотность, содержание свободной серной кислоты и сульфокислот. Свойства сульфированных масел приведены в табл. I. [c.226]


    Данные о свойствах сернистого ангидрида, серного ангидрида и серной кислоты приведены в справочнике сериокислотчика [c.122]

    Окислы обоих типов обладают кислотными свойствами и носят название (у серы) сернистого SO2 и серного SO3 ангидридов. Соответствующие им кислоты — сернистая H2SO3 и серная H2SO4 — весьма резко отличаются по свойствам. Сернистая кислота — слабая, она легко распадается на ангидрид и воду даже при обычных температурах. Серная — сильная, очень устойчивая в водных растворах кислота, распадающаяся с выделением воды только при температурах выше 300° С. Сернистой кислоте и сернистому газу присущи в основном восстановительные свойства [c.72]

    Несмотря на сходство свойств кадмия и цинка, у кадмиевого покрытия есть несколько преимуществ оно более устойчиво к коррозии, его легче сделать ровным и гладким. К тбму же кадмий, в Отлотае от цинка, устойчив в щелочной среде. КадмирОванную жесть применяют довольно широко, закрыт ей доступ только в производстве тары для пищевых продуктов, потому что кадмий токсичен. У кадмиевых покрытий есть еще одна любопытная особенность в атмосфере сельских местностей они обладают значительно большей коррозийной устойчивостью, чем в атмосфере промышленных районов. Особенно быстро такое покрытие выходит из строя, если в воздухе повышено содержание сернистого или серного ангидридов. [c.30]

    Очевидно, химическую коррозию подшипников содержащимися в масле сернистыми соединениями можно объяснить аналогичным механизмом. Наличие в топливе серы имеет решающее значение для коррозионного состояния работающего двигателя. Сернистый и серный ангидриды, образующиеся при сгорании топлива, конденсируются в микрослое влаги в зоне поршень — цилиндр, прорываются в картер вместе с газами и водой и конденсируются в масле. Повышение содержания серы в топливе с 0,2 до 0,9—1% вызывает увеличение износа гильз цилиндров на 30—40% и поршневых колец на 10%. Велико также влияние pH масляной среды на коррозионные свойства масла и связанные с этим процессы изнашивания деталей двигателя [77, 87, 95, 103]. Испытания, проведенные на дизеле 1 Ч 10,5/13 мощностью 7,3 кВт при 150 рад/с, с определением износа верхнего поршневого кольца, активированного вставками из радиоактивного кобальта, показали, что с увеличением щелочности масла скорость изнашивания уменьшается,, а затем остается постоянной [95, 103]. Щелочность масла, pH масляной среды обеспечивают, как правило, зольные или беззольные" моющие присадки к маслам. Многие маслорастворимые ингибиторы коррозии имеют кислый характер (жирные кислоты, СЖ1С ангидриды и эфиры алкенилянтарных кислот и др.), поэтому прж введении их в масла необходимо следить, чтобы общая щелочность масла была не ниже 0,8—1 мг КОН/г. [c.67]

    Разработаны схема непрерывного, полностью автоматизированного процесса сульфирования масел газообразным серным ангидридом в жидком сернистом ангидриде [а. с. СССР 138615 2, с. 141 21, с. 139] пособ получения эффективных сульфонатных присадок при использовании водного раствора нитрата кальция для нейтрализации. сульфокислот промышленная технология высокощелочных присадок НГ-102 и НГ-104 с большей моющей способностью и предложен способ получения присадки НГ-104, обладающей высокими моющими и диспергирующими свойствами и хорошей стабильностью при длительном хранении масла [15, с. 69]. Во ВНИИ НП разработан высокозольный сульфонат (присадка ПМС) с 3,5—5-кратным избытком металла против стехио-метрического количества [1, с. 158 с. 145], создан процесс сульфирования масла газообразным серным ангидридом в пленочном роторном сульфураторе непрерывного действия, ранее применявшемся для сульфирования синтетических алкилбензолов. Бутков, Филиппов и Барабанов [1, с. 95] разработали способ получения магнийсульфоносульфонатной присадки ВНИИ НП-121 путем предварительного окисления масла М-11 из сернистых нефтей. Авторами составлен ряд товарных композиций с использованием этой присадки такие композиции можно добавлять к маслам различных групп для карбюраторных и дизельных двигателей. [c.68]

    Оксид углерода, оксиды азота и сероводород —сильные яды, сернистый ангидрид, находясь в воздухе окисляется до SO3 и при соединении с атмосферной водой образует серную кислоту, которая наносит вред растениям, подкисляет почву, ускоряет процесс коррозии металлов, разрушает каменную облн цовку зданий. Пыль и сажа, помимо раздражающего действия на слизистые оболочки и кожные покровы, снижают прозрачность атмосферы, в том числе для ультрафиолетовой радиации обладающей бактерицидными свойствами, а также препятствуют самоочищени1р атмосферы. [c.204]

    Оба метода получения алкилсульфонатов (реакциями сульфохлорирования и сульфоокисления) имеют свои достоинства и недостатки. При первом расходуется много ш,елочи и хлора, который бесполезно теряется в виде трудно используемых отходов. В этом отношении сульфоокнсление более выгодно, но зато при нем растет потребление сернистого ангидрида и побочно образуется серная кислота, а при двухстадийном процессе требуется дополнительно уксусный ангидрид ( =90 кг на 1 т сульфоната). Все сказанное привело к тому, что процессы сульфохлорирования и сульфоокисления получили примерно одинаковое распространение н промышленности. Из-за отмеченных недостатков и пониженных моющих свойств получаемых алкилсульфонатов оба метода имеют сравнительно небольшое значение — на них приходится лишь 3— 5% от общего производства анионоактивных ПАВ. [c.342]

    Таким образом, сернистый газ, сернистая кислота и ее соли могут проявлять как окислительные, так и восстановительные свойства, однако практически для этих соединений наиболее характерны восстановительные свойства. Сернистая кислота практического значения не имеет, однако ее соли, особенно МагЗОз и NaHSOs, широко используются в фотографии. Двуокись серы получается при обжиге железного колчедана, в огромных количествах используется для получения серного ангидрида с последующим получением серной кислоты. [c.295]

    Зная, что устойчивость производных высших степеней окисления элементов уменьшается в главных подгруппах от более легких элементов к тяжелым, мы можем предположить, что окислительные свойства селенового ангидрида и селеновой кислоты (т. е. их способность отдавать кислород на окисление) выражены сильнее, чем окислительные свойства серного ангидрида н серной кислоты. Это и наблюдается в деиствителыюстп. Как правило, в рядах аналогичных соединений температуры плавления и кипения повышаются при возрастании молекулярной массы. Значит, оба оксида селена должны иметь более высокие температуры плавления и кипения, чем соответственно сернистый н серный ангидриды. Это тоже наблюдается в действительности. [c.217]

    Физико-химические свойства сернокислотных отходов зависят как от состава нефтепродуктов, так и от особенностей технологии и могут колебаться в значительных пределах на одном и том же цроизводстве. Многие из них хорошо растворимы в воде. При длительном хранении под воздействием ультрафиолетового облучения и атало-сферных факторов они могут выделять сернистый ангидрид, полимери-зоваться или коксоваться. В них увеличивается содержание воды за счет поглощения серной кислотой влаги воздуха. За счет уплотнения органической массы меняются реологические свойства и затрудняется возможность их транспорт1фовки по трубоцроводагл. При хранении в закрытых сосудах возможно повышение давления вследствие вьделенкя диоксида серы. [c.8]

    Окись триметилфосфина и BFs образуют соединение ВРз-ОР(СНз)з с т. пл. 149° [118], устойчивое в вакууме в воде растворяется с отщеплением BF3. Интересно отметить, что эта же окись и серный ангидрид дают молекулярное соединение (СНз)зРО-ЗОз, которое тоже является менее устойчивым, чем соединение (С2Н5)зЫ0-50з. Сернистый ангидриде (СНз)зРО взаимодействует плохо, а с (СНз)зНО образует очень устойчивое соединение состава (СНз)зЫ0-802. Эти примеры ясно показывают, что донорные свойства у атома кислорода, связанного с фосфором, много слабее, чем у атома кислорода, связанного с азотом. В табл. 23 приведены молекулярные соединения ВРз с аминами, амидами, нитрилами и другими азот- и фосфорсодержащими ор- 1ическими веществами. [c.89]

    Очевидно, для повышения взрывобезопасности при заполнении и эксплуатации баллонов газом необходима более простая система яркой и лсгкозапомипающейся отличительной окраски с учетом пожаро-взрывоопасных и токсических свойств соответствующих газов и их несовместимости. Наиболее рациональной представляется окраска баллонов всех горючих газов в красный цвет с соответствующими кольцевыми полосами, характеризующими большую или меньшую их токсичность. Баллоны газов-окислителей (кислорода и воздуха) нужно окрашивать в голубой цвет а для токсичных газов-окислителей, таких, как хлор и другие, сохранить защитный цвет. Баллоны всех инертных газов (азота, аргона, гелия, фреонов), химически стабильных оксидов (серного и сернистого ангидридов, углекислого газа и др.) следует окрашивать в черный цвет с соответствующими кольцевыми полосами другого цвета, характеризующими большую или меньшую токсичность. Штуцеры вентилей на баллонах горючих газов должны иметь левую резьбу, а для баллонов газов-окислителей и инертных газов — правую. Для предупрежде- [c.280]

    Обычно принят метод извлечения сернистых соединений растворителями 1 ричем наилучшим растворителем следует считать, повидимому, серную кислоту I . Однако серная кислота, помимо растворяющей способности, проявляет также и другие свойства, например способна окислять меркаптаны. Применение ее, в частности для очистки крекинг-дестиллатов, связано с рядом неудобств, ибо она либо полимеризует непредельные углеводороды, либо вступает с ними в реакцию с образованием алкилсерных кислот. СущестБует патент рекомендующий обходить эти недостатки путем очистки соответствующих дестиллатов при низкой температуре (при 3° или еще ниже). Garyi рекомендует применять раствор серного ангидрида в жидкэй двуокиси углерода. [c.496]

    Высшие окислы КО элементов VI группы имеют кислотный характер еще более ясный, чем у высших окислов предшествующих групп, а слабые основные свойства проявляются в окислах КО разве у элементов четных рядов и то при большом атомном весе, т. е. в тех двух условиях, которые вообще увеличивают основные свойства. Даже низшие формы КО" и К О и т. п., образуемые элементами VI группы, у нечетных элементов — кислотные ангидриды, и только у элементов четных рядов обладают свойствами оснований. Представителем VI группы служит сера, как потому, что в ней кислотные свойства группы резко выражены, так и потому, что она более всех прочих, относящихся сюда простых тел, распространена в природе. Сера образует, как главные свои соединения, №5 — сероводород, 50 — серный и 50 — сернистый ангидриды, И во всех их видны кислотные свойства 50 и 50 —ангидриды кислот, Н 5, хотя и слабая, но все же кислота, В виде простого тела сера, по свойствам, настоящий металлоид не имеет металлического блеска, не проводит электричества, плохой проводник тепла, прозрачна, прямо соединяется с металлами— все свойства металлоидов, как О, С1. Сера притом представляет явное сходство с кислородом, особенно потому, что, как он, соединяется с двумя паями водорода, с металлами же и металлоидами образует соединения, сходные с кислородными. В этом смысле сера двуэквивалентна, если галоиды одноэквивалентны [518]. Химический характер серы выражается ясно в том, что она с водородом образует весьма мало-прочную и малоэнергическую кислоту соли, отвечающие этой кислоте, будут сернистые металлы, как воде отвечают окислы, или хлористому водороду — хлористые металлы. Однако, с первыми сернистые металлы более сходны, чем со вторыми, как далее мы увидим подробнее. Но соединяясь с металлами, как кислород, сера в то же время образует и с кислородом химически прочные соединения, что кладет на все отношения этого элемента особый отпечаток. [c.193]


Смотреть страницы где упоминается термин Свойства сернистого ангидрида и серного ангидрида: [c.340]    [c.210]    [c.41]    [c.148]    [c.1089]    [c.1113]    [c.142]    [c.205]   
Смотреть главы в:

Производство серной кислоты контактным методом -> Свойства сернистого ангидрида и серного ангидрида




ПОИСК





Смотрите так же термины и статьи:

АНГИДРИДА, СЕРНОЙ КИСЛОТЫ И ОЛЕУМА J Свойства сернистого ангидрида

Свойства сернистого и серного ангидрида

Сернистый ангидрид

Сернистый газ сернистый ангидрид

Серный ангидрид

Серный ангидрид свойства



© 2025 chem21.info Реклама на сайте