Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции парафиновых углеводородов с серой

    VII. РЕАКЦИИ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ С СЕРОЙ А. ОБЩИЕ СВЕДЕНИЯ [c.146]

    Начиная с октана, реакция парафиновых углеводородов с серой протекает при температурах выше 160° С достаточно энергично. [c.164]

    При реакции сульфоокисления двуокись серы и кислород взаимодействуют с парафиновыми углеводородами нри ультрафиолетовом облучении или в присутствии органических перекисей, образуя алифатические сульфоновые кислоты. Прямое сульфирование парафиновых углеводородов серной кислотой, аналогичное проводимому с ароматическими углеводородами, невозможно. По-видимому, сульфоокисление позволяет преодолеть этот недостаток. [c.11]


    Под термином сульфохлорирование подразумевают совместное и одновременное действие двуокиси серы и хлора на парафиновые углеводороды цри ультрафиолетовом облучении. При этой реакции образуются ароматические сульфохлориды, которые вследствие своей высокой реакционной способности могут вступать в самые различные реакции. Сульфохлорирование представляет собой типичную цепную реакцию. Применение ее для химической переработки парафиновых углеводородов оказалось чрезвычайно плодотворным и работы в этом нанравлении продолжают быстро развиваться. Сульфохлорирование и сульфоокисление ароматических углеводородов в противоположность парафиновым углеводородам оказалось невозможным. Напротив, эти реакции даже подавляются ароматическими углеводородами и могут служить убедительным примером, доказывающим, что в некоторых случаях парафиновые углеводороды обладают даже большей реакционной способностью, чем ароматические. [c.11]

    Действительный состав продуктов, получающихся при совместном действии двуокиси серы и хлора на парафиновые углеводороды, был точно установлен независимо друг от друга немецкими и американскими исследователями [4]. Эти ученые показали, что здесь речь идет о сульфохлоридах и что реакция сульфохлорирования протекает по уравнению [c.359]

    При облучении ультрафиолетовым светом чистого сульфохлорида парафинового углеводорода, полученного синтетическим путем, происходит отщепление двуокиси серы с образованием алкилхлорида. В результате осуществляется реакция десульфирования (обессеривание) сульфохлоридов, протекающая аналогично при нагревании  [c.365]

    В последнее время удалось осуществить реакцию сульфирования парафиновых углеводородов среднего и высокого молекулярного веса при помощи дымящей серной кислоты и получить сульфокислоты, щелочные и щелочноземельные соли которых нашли применение в качестве моющих средств. При высокой температуре (600— 650° С) предельные углеводороды взаимодействуют с элементарной серой с образованием сульфидов и других сераорганических соединений [41]. [c.57]

    Напротив, натриевые соли моносульфокислот парафинов от декана до эйкозана (как уже сообщалось в главе Сульфохлорирование ) могут со значительным успехом применяться в качестве моющих и пенообразующих средств, эмульгаторов, смачивателей, флотационных реагентов и т. п. и были уже много лет назад внедрены в практику. Правда, эти сульфокислоты были получены по реакции сульфохлорирования, которая, как известно, заключается в совместном действии на парафиновый углеводород двуокиси серы и хлора при одновременном воздействии ультрафиолетовых лучей. Продуктами последней реакции являются алифатические сульфохлориды, которые могут быть затем гидролизованы щелочами в сульфонаты. [c.482]


    Берут 1000 частей парафинового углеводорода (например, додекана или гексадекана) и вводят в них примерно эквимолекулярную смесь хлора и двуокиси серы (с небольшим -избытком сернистого газа). После этого прибавляют в один прием 15 объемных частей раствора, состоящего из 5 частей гримерной перекиси ацетона (с точкой плавления 98°) и 200 объемных частей додекана. Реакция начинается немедленно и через 2—3 мин. реагирующая жидкость становится бесцветной. В дальнейшем ходе реакции вводят по каплям еще около 5 объемных частей раствора катализатора. Спустя 2,5 часа углеводород на половину замещается. [c.370]

    Началом всех реакций является насыщение гетероциклического кольца, затем происходит разрыв гидрированного кольца в различных положениях с образованием первичных и вторичных аминов. Следующая стадия — дальнейший гидрогенолиз с образованием ароматических углеводородов с короткими боковыми цепями, парафиновых углеводородов и свободного аммиака. Соединения, содержащие азот, гидрируются труднее серо- и кислородсодержащих соединений, а также диеновых и олефиновых углеводородов. [c.222]

    Каталитическое хлорирование основано на применении переносчика хлора, такого как йод [2], сера [3], фосфор, сурьма и другие, в виде соответствующих хлоридов, которые растворяются в хлорируемом углеводороде или прн хлорировании газообразных парафиновых углеводородов — в растворителе. Применяются исключительно элементы, имеющие по крайней мере два значения валентности. В качестве гомогенных катализаторов могут также применяться вещества, образующие радикалы, как, например, диазо-метап, тетраэтилсвинец и гексафенилэтан [4]. Они обладают способностью разделять молекулу хлора на атомы, которые тотчас ке вызывают возникновение цепной реакции. [c.113]

    Исключительная реакционная способность связанного с серой гидролизующегося хлора делает алифатические сульфохлориды (которые благодаря сульфохлорированию парафиновых углеводородов являются весьма доступными продуктами) способными к самым разнообразным реакциям. Промежуточные и конечные продукты этих реакций могут быть весьма разносторонне использованы. [c.383]

    Если в смесь парафиновых углеводородов, находящуюся в темноте, ввести хлор и двуокись серы, то практически не наблюдается никакой реакции. [c.362]

    Эта новая реакция замещения парафиновых углеводородов интересует нас еще и потому, что она вносит дополнительный существенный вклад в неоднократно делавшиеся в последние годы наблюдения, что если подобрать подходящие, специально этому удовлетворяющие условия реакции, то в химическое взаимодействие вступают даже вещества с малой реакционной способностью, такие, как парафиновый углеводород, двуокись серы и кислород. [c.481]

    Жидкая двуокись серы является растворителем, имеющим низкую температуру кипения (—10°). Она смешивается с парафиновыми сульфохлоридами в любом соотношении и вместе с тем совершенно неспособна растворять высокомолекулярные парафиновые углеводороды. Преимуществом является также и то, что непрореагировавший углеводород, отделенный при экстрагировании, может быть вновь введен в процесс сульфохлорирования без удаления двуокиси серы, так как последняя сама является участником реакции сульфохлорирования. [c.405]

    Сернистые соединения на катализаторах риформинга превращаются в сероводород, который адсорбируется на катализаторе и подавляет (ингибирует) гидрирующую-дегидрирующую функцию катализатора. На катализаторе, дезактивированном серой, замедляются реакции образования ароматических углеводородов как из нафтенов, так и особенно из парафиновых углеводородов (дегидроциклизация). [c.25]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Переход к переработке гидроочищенного сырья [содержание серы 0,002— 0,005% (масс.) ] позволил вовлечь в реакцию дегидроциклизации некоторое количество парафиновых углеводородов (10—20%), что привело к повышению октановых чисел катализатов до 78—80 (м. м.). [c.158]


    Переход на втором этапе к хлорированным алюмоплатиновым катализаторам, ужесточение требований к предварительной гидроочистке сырья [содержание серы 0,0005—0,001% (масс.)], внедрение осушки сырья и нормирование влажности в зоне реакции позволили ужесточить режим риформинга и при рабочем давлении 2,94—3,43 МПа вовлечь в реакцию дегидроциклизации значительную часть парафиновых углеводородов (до 40% ароматических углеводородов при этих условиях образуется из парафинов). [c.158]

    В табл. 17 приведены результаты автогидроочистки смесей декалина и цетана с сернистыми соединениями на алюмокобальтмолибденовом катализаторе [10, 11]. Эти данные показывают, что не только из нафтеновых, но и из парафиновых углеводородов в результате реакций ароматизации может отщепляться водород. Частично он был использован для гидрирования элементарной серы в сероводород или гидрогенолиза дибензтиофена. Одновременно возросла концентрация водорода в циркулирующем газе. [c.39]

    С целью увеличения выработки кокса и улучшения показателей работы отечественных установок необходимо для каждой из них осуществить специальную подготовку сырья. Способ подготовки следует подбирать на каждом НПЗ в зависимости от свойств исходной нефти и схемы ее переработки. Подготовленное сырье коксования должно иметь высокую коксуемость, низкое содержание серы, металлов и золы. Химический и фракционный состав сырья должны обеспечивать его максимальную ароматизацию, испарение и заданное разложение в реакционном змеевике печи. При этих условиях в камере увеличивается доля реакций уплотнения, идущих с выделением тепла, что улучшает тепловой баланс камеры и позволяет повысить качество кокса (механическую прочность, летучие вещества) [1,2, 7—9]. Этим требованиям наиболее полно могли бы удовлетворять остатки малосернистых и малозольных смолистых нефтей. Однако на отечественных заводах в основном перерабатываются или легкие малосернистые парафинистые нефти, или тяжелые смолистые сернистые нефти. Поэтому в первом случае необходимо снизить содержание парафиновых углеводородов, плохо подготовленных к образованию кокса в камере и способствующих закоксовыванию труб печи. Во втором — подготовка сырья должна обеспечить уменьшение содержания в коксе серы и металлов, при сохранении высокого выхода. За рубежом, особенно в США, вопросам подготовки придают большое значение сырье коксования дифференцируют в зависимости от направления использования кокса [7, 9]. Основную массу кокса для алюминиевой промышленности получают из прямогонных остатков, а кокс для графитированных электродов (премиальный) — из дистиллятных крекинг-остатков [c.16]

    Каталитическую гидроочистку дизельных топлив применяют для уменьшения содержания в них серы до 0,2 масс.% и ниже, для повышения их термической стабильности и улучшения других свойств. Процесс гидроочистки сопровождается реакциями насыщения олефиновых углеводородов и деструктивной гидрогенизации сернистых, кислородных и азотных соединений с образованием парафиновых углеводородов, сероводорода, воды и аммиака. [c.298]

    В процессе окислительного дегидрирования парафиновых углеводородов дорогостоящий иод можно частично или полностью заменить на более доступные и дешевые серу, двуокись серы или сероводород, которые вызывают и меньшую коррозию. При использовании серы в качестве акцептора водорода процесс протекает по реакции  [c.187]

    Белый фосфор в небольших (относительно взятой хлорокиси) количествах растворяется без заметной реакции, но в больших пропорциях реагирует со взрывом. Мышьяк и сурьма взаимодействуют гораздо менее энергично, а красный фосфор вообще не реагирует. Сера, галоиды и многие органические соединения растворяются в хлорокиси ванадия. Парафиновые углеводороды и их галоидопроизводные обычно не реагируют с хлорокисью ванадия, но смешиваются с ней во всех отношениях. Альдегиды реагируют энергично. Хлорокись ванадия реагирует даже со следами воды, образуя твердое вещество, окрашенное в красный цвет. [c.106]

    В нефти и продуктах ее перегонки находятся соединения, содержащие кислород и серу вместе. Это—нейтральные смолы, асфальтены и асфальтогеновые кислоты, часто встречающиеся в значительных количествах в высококипящих дестиллатах и остатках. Они принадлежат к высшим полициклическим соединениям с короткими боковыми цепями. Согласно Маркуссону [81] атомы кислорода и серы в этих соединениях находятся в мостиках , т. е. в середине циклов, и связывают атомы углерода в циклы. Содержание кислорода в нейтральных смолах и асфальтах достигает 5— 10% и содержание серы 0,5—5%. При гидрогенизации нефтяных продуктов смолы и асфальтены превращаются в углеводороды, а находящиеся в них кислород и сера дают воду и сероводород. С другой стороны, нейтральные смолы и асфальтены могут быть получены из высокомолекулярных полициклических углеводородов путем окисления. Эти реакции показывают, что имеется очень тесная связь между полициклическими углеводородами и нейтральными смолами и асфальтенами. Нужно упомянуть, что в результате окисления парафиновых углеводородов или длинных парафиновых боковых цепей получаются преимущественно кислоты, тогда как нейтральные смолы образуются в результате окисления ароматических углеводородов. [c.98]

    Реакция сульфоокисления заключается в том, что на парафиновые углеводороды действуют смесью двуокиси серы и кислорода при ультрафиолетовом облучении. При этом образуются алкил сульфокислоты  [c.307]

    Сырье. В качестве сырья применяется пропилен, свободный от серы и от других олефиновых углеводородов, и особенно от изобутилена. Пропилен может содержать парафиновые углеводороды, так как они не вступают в реакцию. [c.399]

    В результате исключительной подвижности хлора, связанного с серой, сульфохлориды обладают высокой реакционной способностью- Этим объясняются мно гочисленные их превращения, дающие вещества, которые являются важными промежуточными и конечными продуктами технологии соединений алифатического ряда. Таким образом, реакция сульфохлорирования прокладывает путь к химическому использованию парафиновых углеводородов путем применения реакции замещения и служит убедительным примером того, что малая реакционная способность парафинов не является общим правилом, не знающим исключений. [c.356]

    Совместное действие двуокиси серы и брома на парафиновые углеводороды ведет к лишь едва заметному образованию сульфобро-мндов, но реакция сейчас же начинается и протекает очень быстро п гладко, если половину брома заменить хлором. Как видно из следующего уравнения реакции, бром вместе с двуокисью серы вступает в молекулу парафина с одновременным выделением хлористого водорода  [c.383]

    Чем длиннее углеродная цепь парафинового углеводорода, тем позднее начинается образование сульфурилхлорида. Образование сульфурилхлорида у гексана (по Кропелину с сотрудниками) [7] наступает лишь после введения 2 молей хлора и двуокиси серы и при продолжении олыта все время возрастает пока, наконец, весь хлор не будет израсходован. У высокомолекулярных парафиновых углеводородов также образуется сульфурилхлорид, если реакция длится до тех пор, пока почти каждый третий атом углерода не ваместится, что совпадает с упомянутым выше явлением при сульфохлорировании пропана, содержащего в молекуле 3 атома углерода. [c.391]

    Свободная сера. Присутствие в нефтях свободной серы можно объяснить разложением более сложных сернистых соединений, а также окислением сероводорода или меркаптанов. Свободная сера — активный корродируюш ий агент и ее присутствие в нефтях и дистиллятах (а обнаруживается она главным образом в бензиновых дистиллятах) крайне нежелательно вследствие сложности очистки. При термических процессах свободная сера реагирует с углеводородами нефти, образуя органические соединения серы. Она вступает преимущественно в реакции с высшими парафиновыми углеводородами с образованием в основном сероводорода и сероуглерода. С непредельными углеводородами сера реагирует легче, образуя соединения сложного строения, например циклическое соединение  [c.25]

    Образование алкилсульфоновых кислот из парафиновых углеводородов, двуокиси серы и кислорода в присутствии перекисей алкилсуль-фоннлацилов протекает по внешним признакам как цепная реакция, поскольку на 1 моль прибавленной перекиси получается четырехкратное количество сульфоновых кислот. [c.495]

    Однако квантовые выходы были во всех случаях меньше единицы. Лучше всего эта реакция протекает с высшими парафиновыми углеводородами. Третичные атомы водорода реагируют наиболее легко, первичные наиболее трудно. При реакции двуокиси серы с пропаном и н-бутаном установлено образование двух изомерных сульфиновых кислот, причем в случае бутана преимущественно получается сульфи-новая кислота с группой — ЗОаН у вторичного атома углерода. Олефины вступают в эту реакцию гораздо труднее и тормозят превращение насыщенных углеводородов. [c.505]

    Продукты соединения с полухлористой серой довольно устойчивы и кипят значительно выше исходных углеводородов. Поэтому их можно отделить перегонкой от нафтеновых и парафиновых углеводородов, которые на холоду почти не вступают в реакцию с полухлористой серой. Однако вследствие химической индукции при наличии непредельных углеводородов нафтеновые и парафиновые углеводороды могут в какой-то степени реагировать с Sa b на холоду. [c.511]

    Одним из таких показателей является скорость реакции. В гидрогенизационных процессах скорость гидрирования непредельных углеводородов значительно больше скоростей их распада, поэтому гидрокрекингу практически подвергают парафиновые углеводороды, образовавшиеся в результате гидрирования. При гидрировании азотсодержащие соединения разрушаются, как правило, труднее, чем серо- и особенно кислородсодержащие. Устойчивость сероорганических соединений увеличивается в следующем порядке меркаптаны<дисульфиды<сульфиды<тиофены. С увеличением молекулярной массы сероорганических соединений скорость гидро-генизационного обессеривания уменьшается. Этим, по-видимому, объясняется возможность применения более мягкого режима гидрирования при обессеривании бензиновых и лигроиновых дистиллятов, чем при очистке более тяжелых дистиллятов. [c.218]

    Процесс риформинга с комбинированной загрузкой катализаторов В 1988 г. фирма "СЬе топ КесеагсЬ Со" освоила технологию комбинированной загрузки катализаторов в реакторы установки с ПРК [133,209]. В соответствии с кинетикой реакции превращения сьфья в различных реакторах в первые три реактора, где происходит преимущественно дегидрирование нафтеновых углеводородов и сильное воздействие соединений серы, загружен катализатор типа Р (Ке/Р1=2,0) в последний реактор, где доминируют реакции дeгидpo ыкJ изa-ции и гидрокрекинга парафиновых углеводородов, загружен высокорениевый катализатор типа Н (Яе/Р1 > 2,0 ). [c.68]

    Рассмотрим теперь некоторые работы ио гетерогенно-катали-тическим процессам алкилирования под высоким давлением. В большой серии исследований Л. X. Фрейдлина, А. А. Баландина и И. ]И. Назаровой было изучено алкилирование (в присутствии окисно-алюминиевых катализаторов) н. бутана этиленом [436], пропиленом [437] и бутиленом [438], алкилирование н. пептана пропиленом [439], н. гептана пропиленом [438], пропана и изоиентана этиленом [440]. Авторами показано, что пропан алкилируется труднее других нормальных парафиновых углеводородов с большим молекулярным весом. Этилен оказывается в реакциях алкилирования более реакционноспособным, чем пропилен и бутилен. Для нолучения оптимальных выходов алкилатов и ожидаемых фракций, содержащих продукты первичного алкилирования, авторы проводили реакцию при температуре около 450 и давлениях 400—600 атм. При более низких давлениях и температурах превалируют реакции полимеризации, а при более высоких температурах все большую роль приобретают процессы крекинга. Указанными авторами установлено наличие последующего алкилирования образующихся парафинов. При гетерогенно-каталитическом алкилировании, как и при термическом процессе, олефин присоединяется иреимущественно ко второму углеродному атому парафина. [c.239]

    Так как количество полученных отдельных фракций парафиновых углеводородов было недостаточно, то для дальнейшего исследования фракции парафиновых углеводородов были скомпаундиро-ваны в одну фракцию 180—350° С, имеющую плотность = 0,7864, показатель преломления = 1,4400, молекулярный вес 188 и содержание серы 0,10%. Затем фракция нормальных парафиновых углеводородов была подвергнута повторной хроматографической очистке от серы и ароматических на силикагеле. Отсутствие ароматических углеводородов подтверждено качественной реакцией по Настюкову. [c.71]


Смотреть страницы где упоминается термин Реакции парафиновых углеводородов с серой: [c.128]    [c.140]    [c.140]    [c.357]    [c.55]    [c.88]    [c.128]    [c.114]    [c.10]    [c.623]   
Смотреть главы в:

Введение в нефтехимию -> Реакции парафиновых углеводородов с серой




ПОИСК





Смотрите так же термины и статьи:

Парафиновые углеводороды

Парафиновые углеводороды, абсорбция реакция с однохлористой серо



© 2025 chem21.info Реклама на сайте