Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спиральная структура макромолекул в кристаллах

    СПИРАЛЬНАЯ СТРУКТУРА МАКРОМОЛЕКУЛ В КРИСТАЛЛАХ [c.316]

    Следовательно, основной вклад в оптическую активность дает спираль 3] , свойственная структуре этой полимерной цепи. Б отсутствие оптически деятельного атома правые и левые спирали в силу симметрии образуются с одинаковой вероятностью. Наличие оптически деятельного атома С в боковом привеске делает молекулу в целом асимметричной и навязывает спиралям 3 определенное направление закручивания. Отсюда и огромный вклад спиральной структуры в оптическую активность вещества. Однако растворы подобных оптически активных полимеров в углеводородных растворителях сохраняют большую оптическую активность, близкую к активности в кристаллическом состоянии. Следовательно, в растворенных макромолекулах сохраняются спиральные витки одного определенного направления закручивания, подобно тому как это имеет место в кристалле. [c.78]


    Образование двойной спирали напоминает кристаллизацию, т. к. при этом возникает система с ближним и дальним порядком. Но кристаллизация эта своеобразна, т. к. в ней участвуют две объединившиеся полимерные цепи. При нагревании ДНК в р-ре происходит плавление упорядоченной спиральной структуры. Плавление ДНК (переход спираль — клубок) — это кооперативный переход, напоминающий фазовые переходы в трехмерных системах (см. Макромолекула). Однако переход происходит хотя и резко, но во вполне измеримом темп-рном интервале (в отличие от плавления обычных кристаллов), У ДНК бактериофагов, к-рая вполне гомогенна по своему составу, ширина интервала плавления ДГ (вычисленная путем проведения касательной в центре кривой перехода) составляет ок. 3 °С. [c.193]

    Электронная микрофотография монокристалла показана на рис. 53. На фотографии видна спиральная структура полиокси-метиленового кристалла, составленного из многих плоских слоев. Этот кристалл выращен из раствора диметилфталата. Было показа о, что хотя размер и форма единичного, кристалла зависят от условий его выращивания, для него бывает характерным определенный тип слоистой структуры. Опыты по электронной дифракции показали, что цепи макромолекул складываются и ориентируются нормально к плоскостям пластин, толщина которых обычно бывает около 100 А. [c.154]

    Пробным камнем для обсужденной структуры кератина послужили спектроскопические измерения в инфракрасной области, в особенности измерения дихроизма. Было однозначно показано, что направления связей С = 0 и К—Н параллельны оси нерастянутого волокна, а это означает а-спиральную структуру молекул с внутренними водородными связями. При переходе к р-форме дихроизм меняет знак и связи оказываются перпендикулярными оси макромолекулы, как то и должно быть. Интересно, что измеренный вначале дихроизм N—Н и С=0 колебательных полос оказался относительно малым, если сравнивать белок с модельными пептидами. Это объясняется несовершенством кристаллов в белке и наличием аморфной части. Промывая кератин Н О, можно заменить только в пределах аморфных областей водород на дейтерий и тем самьш исключить поглощение и дихроизм аморфной части волокна, так как частота N—Н -колебаний сдвинута в 1,4 раза. Таким образом удается измерить дихроизм N—Н-колебаний в кристалле кератина. Он имеет нормальную величину порядка 5. [c.87]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Структура зародышей кристаллизации, а также активной поверхности кристаллов остается еще неизученной, однако ввиду того, что в момент инициирования реакции система является гомогенной, можно с уверенностью утверждать, что активные центры образуются в результате взаимодействия мономерных единиц с катализатором. Кроме того, принимая во внимание то обстоятельство, что размер кристаллов в направлении роста не совпадает с длиной полимерной цепочки (в спиральной конформации), рассчитанной по среднечисловой молекулярной массе, можно считать, что длина макромолекул уменьшается. Это явление может быть вызвано различными причинами, в том числе реакцией переноса [37] и обрыва цепи при полимеризации [37, 38], деполимеризацией во время измерений вязкости и т. п. [c.287]

    Рентгеноструктурный анализ фибриллярных белков [75, р. 3 76, р. 603 77] дает картину, весьма бедную рефлексами, вследствие чего прямое определение структуры Фурье-синтезом и построением карт электронной плотности становится невозможным. Вместо этого из рентгенограмм волокна определяют проекцию мономерной единицы на ось спирали (с1) и угол спирального вращения (0). Этих данных, разумеется, недостаточно для нахождения всех углов ф и г з (а иногда и х), и можно надеяться, что конформационный анализ станет важным вспомогательным инструментом при расшифровке структуры, подобно тому, как это уже делается для синтетических макромолекул в кристаллах. Действительно, если из расчета конформаций удастся получить все углы Ф, о]) и Х> то тогда нетрудно будет вычислить координаты атомов и сравнить теоретическое распределение интенсивности рентгенограмм с экспериментальным. [c.382]

    Гребнеобразное строение макромолекул с боковыми мезогенными группами определяет их тенденцию к образованию слоевых структур. В связи с этим возникают вопросы, как в такой системе образуется спиральная надмолекулярная структура и каковы ее особенности в сравнении с холестерической структурой низкомолекулярных жидких кристаллов Ответы на них даны в работах [23, 28, 29], где изучена структура гомополимеров и сополимеров, образующих холестерическую мезофазу. [c.348]

    Кори нашли, что все они не удовлетворяют приведенным требованиям и должны быть отвергнуты. Авторы предложили две новые структуры (а и у) и структуру складчатого листа (Р). Как известно, до работ Полинга и Кори было разработано большое число молекулярных моделей полипептидов, а Брэгг, Кендрью и Перутц проанализировали этот вопрос в общем виде и как будто предусмотрели все возможные варианты. Как же в таких случаях удалось предложить совершенно новые структуры Это объясняется двумя обстоятельствами. Одно из них связано с более жесткими требованиями, предъявленными Полингом и Кори к геометрии полипептидов другое, сыгравшее решающую роль, — с предположением о реализации спиралей с нецелочисленными винтовыми осями симметрии. Во всех предпринимавшихся ранее поисках структур полипептидов использовались элементы симметрии атомных и низкомолекулярных кристаллов. В этом случае винтовые оси, действительно, могут быть только целочисленными. По отношению к отдельной макромолекуле требование, чтобы спираль содержала только целое число аминокислотных остатков на виток, не может быть оправдано соображениями физического порядка. Использование до Полинга и Кори целочисленных винтовых осей - результат автоматического перенесения кристаллографического принципа симметрии на спиральные полимерные объекты, т.е. в область, где он не работает. [c.22]

    Если ковалентные силы вдоль цепи — это силы номер 1, то водородные связи — это силы номер 2 (по величине энергии связи), и навязываемая ими спиральная структура макромолекулы называется вторичной структурой белка. В белках, как и нуклеиновых кислотах, мы встречаемся с особым случаем макромолекул с большими внутримолекулярными (нехимическими) силами. Вызываемая силами водородной связи правильная пространственная организация цепи часто называется внутримолекулярной кристаллизацией. И де11Ствительно каждая такая макромолекула напоминает кристалл. Спиральная структура придает ей как ближний, так п дальний порядок. Кроме того, ее механические свойства оказываются исключительными подобная цепь жестка, как палочка. Как мы увидим дальше, аналогия с кристаллизацией может быть продолжена — вторично структуре свойственна точка плавления. Вторичная структура, образуемая системой водородных связе , может быть лучше всего зучена ie на белках, а на модельных пол мерах — простых полипептидах. [c.33]

    Плавление полистирола как пример многостадийного плавления изотактического полимера со спиральной конформацией макромолекул (табл. 2.10) было изучено более широко. Несколько пиков плавления, о которых впервые сообщили Бун и др. [25], позднее были подробно проанализированы [ 137, 139, 175, 237]. Белл и Дамблетон [16] ошибочно предположили, что, как и в случае найлона-6,6 (разд. 9.3.2.8), один из двух главных пиков плавления связан с плавлением кристаллических образований, более близких к ламелярной структуре (температура этого пика плавления около 232°С, отжиг мало влияет на температуру плавления, но приводит к уменьшению пика), а второй - с плавлением кристаллических образований, более близких к сноповидной структуре (температура и площадь которого увеличивались в процессе отжига). Пелыхбауэр и Мэнли [ 179] обнаружили также небольшой третий пик плавления при более низкой температуре, который они связали с наличием стереоблоков в макромолекулах или других примесей в образце (площадью, составляющей около 10 % общей площади пиков плавления). Эти первые представления о числе и природе пиков плавления были уточнены благодаря более подробному исследованию Лемстра и др. [ 137], включившему также исследование плавления кристаллов, выращенных из раствора (разд. 9.3.1.2 и рис. 9.17). [c.237]


    Особый случай блок-сополимеров представляют системы, в которых кристаллизуются только боковые группы [уравнение (5)]. Часто число заместителей велико, как, например в длинноцёпочечных полиалкенйх-1. В этом случае.решающее значение имеют места хи-шческого соединения боковых заместителей и основной цепи, так как они определяют, будет ли кристаллизоваться основная цепь или боковые заместители. Для достаточно коротких боковых цепей в изотактических виниловых полимерах наблюдается образование высокскрмсталлических спиральных структур (табл. 2.10 и 2.11). По мере увеличения длины боковой цепи возможно либо образование спиральной кристаллической конформации всего повторяющегося звена цепи, либо кристаллизация только боковой цепи. В последнем случае основная цепь остается некристаллической, а тип кристалла при кристаллизации боковых цапей зависит от условий кристаллизации [148]. При достаточно длинных боковых цепях кристаллизуются даже атактические макромолекулы. В этом случае основные цепи образуют аморфные слои (разд. 10.3.4). [c.363]

    Теоретические и экспериментальные исследования спектров макромолекул, проведенные в последние годы, позволили получить некоторые важные данные о физических свойствах и структуре полимеров. Так, при помощи анализа нормальных колебаний было окончательно установлено строение макромолекул таких полимеров, как полиоксиэтилен [18, 19], полиаллен [8], поли-диоксолан [48], полиакрилонитрил [49], пентон [50], причем данные по строению этих полимеров не удавалось получить другими методами структурного анализа. Одним из ярких примеров успеха метода колебательной спектроскопии является окончательное установление структуры макромолекул полиакрилонитрила [49]. Рентгеновскими исследованиями кристаллов этого полихмера [29, 30] и изучением ЯМР-спектров высокого разрешения растворов не удавалось определить конфигурацию и конформацию цепи ПАН. В 1964 г. был проведен расчет частот и форм нормальных колебаний для плоской син-диотактической модели ПАН и его дейтеропроизводных и результаты расчета сравнивались с экспериментальными спектрами [47]. Однако полного совпадения рассчитанных и наблюдаемых спектров получено не было. В 1965 г. Кримм и др. вычислили колебательный спектр различных моделей ПАН — спиральной изотактической, спиральной синдиотактической и плоской зигзагообразной синдиотактической [49]. [c.260]

    ТОГО, что спиральная структура имеет тенденцию существовать также (по крайней мере частично) и в аморфном состоянии. Однако ее можно обнаружить лишь в кристаллическом состоянии. В кристаллах могут находиться макромолекулы изотактических полимеров со спиральным расположением по винтовым осям третьего (в случае полипропилена, полистирола, модификации I полибутилена и т. д.), четвертого (в случаеполи-З-метил-бутена 1) или седьмого порядка (в случае поли-4-метилпен-тена-1 и т. д.) (рис. 3) [16, 17]. [c.14]

    В этих рентгенограммах, содержащих до 100 независимых рефлексов, отражены некоторые общие свойства структуры ДНК, а именно спиральное строение макромолекулы с диаметром спирали 20 А (9 А — радиус, на котором расположен атом фосфора). Виток спирали содержит в длину 10 мононуклеотидных звеньев трансляционное расстояние вдоль оси спирали составляет 34,6 А на виток, т. е. 3,46 А на 1 мономерное звено. Из рентгенограммы следует еще, что в элементарную ячейку кристалла (моноклинную с параметрами а=22,2 А, 6=40 А, с=28,1 А, р=97°) входят [c.208]

    Спиральные последовательности различной длины должны быть связаны между собой разупорядоченными неспирализованными участками. Степень такой разупорядоченности определяется температурой, природой растворителя и полимера и, возможно, молекулярным весом ПО]. Сосуществование ориентированных и беспорядочных участков цепей приводит к интересной проблеме переходов спираль — клубок [И]. Атомы, находящиеся в неупорядоченных отрезках макромолекулы, участвуют в броуновском движении, а атомы, находящиеся в ориентированных спиральных участках, фиксированы спиральной -структурой, которая является одномерным кристаллом. Эта спонтанная кристаллизация неспирализованных цепей представляет собой интереснейший аспект физической химии полиаминокислот. Такое явление удалось наблюдать пока только в одной системе — в полинук-леиновых кислотах и полинуклеотидах. Возникает вопрос каково минимальное число кислотных остатков, необходимое для спонтанного перехода спираль — клубок  [c.607]

    Под конформацпоннымн превращениями в макромолекулах до самого недавнего времени понимали превращения (переходы) спираль — клубок в полипептидах и нуклеиновых кислотах. Предполагалось, что, в отличие от макромолекул нативных белков, нуклеиновых кислот и их синтетических моделей — полипептидов и полинуклеотидов, где внутримолекулярные взаимодействия (в основном, водородные связи) обеспечивают наличие вторичной структуры, внутримолекулярные силы у обычных синтетических поли.меров недостаточны для поддержания уиорядоченности в цепи. Макро.молекулы первых существуют в растворах в конформации одионитевых (белки, полипептиды) или двунитевых (нуклеиновые кислоты, полинуклеотиды) спиралей (см. [251, 510]). Двойная спираль Крика — Уотсона [511] для дезоксирибонуклеиновой кислоты и а-сиираль Полинга — Кори [512] для полипептидов — наиболее известные примеры вторичной молекулярной структуры. Макромолекула в спиральной конформации подобна по своей структуре одномерному кристаллу. Изменением температуры или других условий (состав смешанного растворителя, pH растворителя — [c.252]

    Был предложен ряд моделей структуры центрального ядра [27]. Вначале автор с сотр., видимо, поддавшись желанию захватить лидерство в соревновании с Пеннингсом, вместо высказанной Пен-, нингсом [28] и Келлером с сотр. [30] гипотезы о том, что ядро шиш-кебаба представляет собой кристаллы с выпрямленными цепями, предложили иную модель, согласно которой многослойная ламеляр-ная структура, образовавшаяся по механизму спиральной дислокации, затем испытывает частичное разворачивание макромолекул под действием сдвиговых напряжений [31], что приводит к образованию структуры волокнистого типа (ядра) [31, 32]. Однако результаты ,,  [c.207]

    Индивидуальная макромолекула, обладающая вторичной структурой, представляет собой как бы одномерный кристалл. Подобно обычному кристаллу, такая одномерная упорядоченная система способна при изменении температуры или состава растворителя претерпевать резкий переход, сходный с фазовым. т. е. плавиться , переходя к структуре свернутого клубка, типичной для обычных макромолекул. Переходы спираль— клубок были открыты в 1954 г. Доти. Холтцером, Брэдбури и Блаутом в молекулах синтетического полипептида поли- [--бензил- -глутамата, принимающих спиральную или клубкообразную конформацию в зависимости от состава растворителя, и затем подверглись детальному экспериментальному и теоретическому исследованию. Наиболее важные экспериментальные работы в этой области выполнены Доти и его школой. [c.292]

    Гетеротактический полистирол относится к на 1более известным и технически важным синтетическим продуктам. При растяжении полимера цепные молекулы ориентируются лишь в незначительной степени [918] н добиться появления дихроизма почти не удается [983, 1134]. В спектрах же сополимеров с относительно высоким содержанием стирола дихроизм полос отчетливо проявляется [1483], В противоположность гетеротактическому полистиролу нзотактический полимер, полученный с помощью катализаторов Циглера—Натта, обладает свойствами кристалла и при растяжении хорошо ориентируется. Макромолекулы стереорегулярного полимера имеют спиральную конформацию. В каждом витке спирали содержится три мономерных звена [1227, 1228, 1245], Структура полистирола сходна со структурой полипропилена. [c.259]


Смотреть страницы где упоминается термин Спиральная структура макромолекул в кристаллах: [c.148]   
Смотреть главы в:

Конфирмации органических молекул -> Спиральная структура макромолекул в кристаллах




ПОИСК





Смотрите так же термины и статьи:

Кристалл структура

Спиральные структуры



© 2025 chem21.info Реклама на сайте