Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура периодической таблицы

Таблица 3.7. Структура периодической системы в мире атомов и антиатомов Таблица 3.7. <a href="/info/18325">Структура периодической системы</a> в мире атомов и антиатомов

    СТРУКТУРА ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ [c.35]

    Решающее значение для характеристики химических свойств элементов имеет внешняя электронная оболочка атомов. Менее резко выражена зависимость свойств атомов и ионов от второго снаружи слоя. Влияние структуры этого слоя сказывается тем сильнее, чем меньше электронов в самом внешнем слое. Н. Бор в своем варианте периодической таблицы расположил элементы, исходя из аналогичности электронных структур нейтральных атомов. В рамках помещены элементы, в атомах которых происходит заполнение внутренних электронных слоев второго (простая рамка) или третьего (двойная рамка) снаружи (см. с. 86). [c.85]

    Теперь легче объяснить многие факты, изложенные в гл. 7. Структура периодической таблицы, с ее группами и периодами, может рассматриваться как проявление определенной последовательности энергетических уровней атомов (см. рис. 9-2). Элементы одной группы обладают сходными химическими свойствами потому, что они имеют одинаково запол- [c.399]

    Это сходство с металлами указывает, что валентные электроны в германии не связаны с атомами столь прочно, как можно было бы ожидать для настоящего ковалентного каркасного кристалла. Мыщьяк, сурьма и селен существуют в одних модификациях в виде молекулярных кристаллов, а в других модификациях - в виде металлических кристаллов, хотя атомы в их металлических структурах имеют относительно низкие координационные числа. Известно, что теллур кристаллизуется в металлическую структуру, но довольно вероятно, что он может также существовать в виде молекулярного кристалла. Положение астата в периодической таблице заставляет предположить наличие у него промежуточных свойств, однако этот элемент еще не исследован подробно. [c.607]

    Объясните структуру периодической таблицы элементов Д. И. Менделеева. Что такое период, группа элементов Как в них изменяются свойства элементов  [c.22]

    Вариант 2. Так как периодическая таблица элементов является отражением электронной структуры атомов, то электронную формулу элемента можно получить при последовательном заполнении электронами атомных орбиталей, начиная от атома водорода до атома Мп. До атома кальция происходит последовательное заполнение внешних слоев  [c.23]

    Принцип заполнения, уже упоминавшийся ранее, был введен Бором для объяснения структуры периодической таблицы элементов он изложен в гл. 4, В том виде, в котором этот принцип будет нужен для объяснения строения молекул, его можно сформулировать следующим образом. Наинизшее по энергии состояние молекулы получается, если поместить электроны один за другим на наинизшие доступные молекулярные орбитали при условии соблюдения принципа Паули, состоящего в том, что на каждой орбитали не может находиться более двух электронов (которые должны иметь противоположные спины). [c.95]


    В следующих разделах будут рассмотрены структура периодической таблицы, ее связь со строением атома и современные способы использования этой таблицы. [c.89]

    Попробуем рассмотреть структуру периодической таблицы и проявления периодичности с позиций строения атома (для этого очень полезно еще раз посмотреть материал гл. 2). Характеристикой положения элемента в периодической системе является заряд ядра атома. Если мы будем последовательно двигаться по периодической системе слева направо, то каждый такой шаг будет сопровождаться увеличением заряда ядра на единицу и таким же увеличением числа электронов в электронной оболочке. Напомним, что современная квантово-механическая модель атома позволяет нам рассматривать электроны как размытые в пространстве облака отрицательного заряда определенного размера и формы, задаваемых, соответственно, главным квантовым числом п и орбитальным квантовым числом I, т. е. видом атомной орбитали (АО). В соответствии с принципом минимума энергии при этом будут последовательно заполняться слои электронной оболочки с определенным значением п и по мере его увеличения будет увеличиваться число возможных форм электронных облаков, т. е. число возможных значений I  [c.233]

    Разработка этой модели позволила Ферми в свое время вычислить распределение электронов по уровням энергии в атоме и теоретически объяснить структуру периодической таблицы [c.122]

    Структура периодической таблицы. В периодической таблице все элементы расположены по возрастающим атомным номерам в ряд, внутри которого периодически повторяются элементы со сходными свойствами. [c.22]

    Когда Менделеев составлял периодическую таблицу, он исходил из валентности элементов, поскольку о распределении в них электронов в то время ему еще ничего не было известно. Теперь вполне разумно было предположить, что валентность элемента определяется его электронной структурой. [c.158]

    В предыдущей главе мы познакомились с волновыми функциями и энергетическими уровнями атома водорода. При помощи этих сведений и так называемого принципа заполнения мы сможем перейти к выяснению электронного строения атомов всех элементов. Это позволит нам понять структуру периодической системы, таблица которой изображена на рис. 7-3 [c.385]

    Имитация структуры простых веществ р-элементов IV группы наблюдается также в ряде бинарных соединений типа А В 1 и А В ч (где А и А —элементы II и I групп соответственно, В и В " — р-элементы VI и VII групп). Ниже приведена часть периодической таблицы Д. И. Менделеева, в которой выделены символы элементов, дающих бинарные соединения с тетраэдрическим расположением атомов в структуре хотя бы с одним из равноудаленных от IV группы элементов  [c.540]

    На основании характера изменения свойств в 1И группе Периодической таблицы и приведенных ниже данных, обсудите химию таллия. Обратите особое внимание на структуру, характер связи и химические свойства галогенидов и оксидов. [c.415]

    Зависимость мощности максимумов от атомных номеров. Как электронная плотность атома, так и его электростатическое поле возрастают симбатно с ростом атомного номера. Поэтому в обоих методах (РСА и ЭСА) исследователь сталкивается с затруднениями, когда требуется различить атомы с близкими атомными номерами. Ядерная плотность не является симбатной функцией атомного номера. Атомы, соседние в периодической таблице, например Ре, Со и N1, дают в Фурье-синтезах максимумы, совершенно различные по высоте. Особенно удобен НСА для установления позиций самых легких атомов материи — атомов водорода, фиксация которых в случае РСА не всегда возможна, а точность определения координат заведомо низка. Кроме того, дифракция нейтронов зависит от спиновых магнитных моментов ядер. Для потока нейтронов ядра одного и того же элемента, не совпадающие по ориентации спинового момента, являются разными ядрами. Поэтому НСА широко используется для решения специальных задач, таких, как анализ упорядоченности сплавов, образованных металлами с близкими атомными номерами анализ магнитной структуры кристалла выявление и уточнение координат атомов водо- [c.127]

    Структура периодической системы элементов. Предложены сотни различных вариантов периодической системы элементов, однако широкое применение получили варианты, весьма близкие к таблице, составленной Д. И. Менделеевым. [c.39]

    При изучении структуры периодической системы и расположения в пей химических элементов легко заметить, что металлические элементы отделены от неметаллов условной диагональной линией, проходящей от бора к астату. Неметаллы занимают верхнюю правую часть таблицы, и по периодам распределяются следующим образом в первом периоде — два (И, Не) во втором — шесть (В, С. Ы, О, Г, Ые) в третьем — пять (81, Р. 8, С1, Аг) в четвертом — четыре (Аз, 8е, Вг, Кг) в пятом — три (Те, I, Хе) и в шестом — два (А , Ян). [c.229]

    В 1870 г. структура периодической системы приобрела наиболее совершенную форму (так называемая короткая таблица). С этого момента периодический закон и периодическая система становятся мощным инструментом в предсказании еще не открытых элементов. [c.267]


    В укороченной периодической таблице существенно изменена структура групп, так как в один вертикальный столбец попадают элементы, не являющиеся. .. Например, в первой группе наряду с щелочными металлами находятся. .. [c.8]

    Какова структура периодической системы, выраженная краткой таблицей Что определяет число периодов, групп и подгрупп Чем отличается восьмая группа от остальных  [c.97]

    Рассмотрим структуру Периодической системы элементов (короткую форму таблицы). Каждый химический [c.31]

    Принципиальный подход к построению таблиц единый — элементы располагаются в порядке возрастания заряда ядер их атомов. Физической основой структуры периодической системы элементов служит определенная последовательность формирования электронных конфи- [c.45]

    Было обнаружено, что кратные связи часто образуют элементы второго периода периодической таблицы (бор, углерод, азот, кислород) и реже более тяжелые элементы. Так, молекула азота N2 имеет структуру Ы = Ы , тогда как молекула фосфора Р4 содержит шесть изогнутых одинарных связей. [c.143]

    В периодической таблице, показанной на рис. 14-8, кристаллы элементарных веществ подразделяются на металлические, ковалентные каркасные и молекулярные. В табл. 14-1 устанавливается зависимость между координационным числом атомов в кристалле и структурой элементарных твердых веществ. Большинство элементов кристаллизуются с образованием какой-либо металлической структуры, в которой каждый атом имеет высокое координационное число. К металлам отнесены и такие элементы, как олово и висмут, кристаллизующиеся в структуры со сравнительно низким атомным координационным числом, но все же обладающие ярко выраженными металлическими свойствами. Светлоокрашенная область периодической таблицы включает элементы со свойствами, промежуточными между металлами и неметаллами. Хотя германий кристаллизуется в алмазоподобную структуру, в которой координационное число каждого атома равно только 4, по некоторым из своих свойстг он напоминает металлы. [c.605]

    Ряд необычных структур, таких, как НР и димер уксусной кислоты в газовой фазе (рис. 14.11), служат доказательством образования водородных связей. Необычно высокая константа кислотной диссоциации салициловой (орто-оксибензойной) кислоты по сравнению с мета- и яара-нзомерами также свидетельствует об образовании водородной связи. Водородная связь образуется тогда, когда протон поделен между двумя электроотрицательными атомами, такими, как Р, О или Ы, которые находятся на соответствующем расстоянии друг от друга. Протон водородной связи притягивается отрицательным зарядом высокой плотности электроотрицательных атомов. Фтор образует очень сильные водородные связи, кислород — более слабые, а азот — еще более слабые. Необычные свойства воды обусловлены в значительной степени водородными связями, включающими четыре неподе-ленные пары электронов на кислороде (разд. 11.6). Лед имеет тетрагональную структуру, причем каждый атом кислорода связан с четырьмя атомами водорода. В этом случае водородные связи образуются вдоль оси каждой неподеленной пары электронов в жидкой воде их существование ответственно за высокую температуру кипения по сравнению с температурой кипения гидридов других элементов той же подгруппы периодической таблицы (—62° С для НгЗ, —42° С для НгЗе, —4° С для НгТе). При испарении воды водородные связи разрываются, [c.445]

    Учашиеся должны получить ясное представление о том, что форма современной периодической таблицы не зависит ни от какого произвола, а определяется экспериментально наблюдаемыми химическими свойствами элементов ее структура не предопределяется какой-либо теорией (объяснение периодической системы на основе представлений о строении атома излагается в двух следующих главах). Учащиеся должны усвоить названия различных частей периодической таблицы и понять, что, запомнив свойства нескольких химических веществ, они смогут делать довольно точные предсказания свойств многих других веществ. [c.573]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]

    Формально Д. Н. Трифонов признает, что взгляд на Периодическую систему, как на нечто законченное, глубоко ошибочен, ибо оказывается отражением слишком упрощенного понимания явления периодичности . Такое заявление автора можно было бы только приветствовать, если бы он сам следовал ему на деле. В действительности же, его вполне устраивает Периодическая таблица, надо только наглухо закрыть ее верхнюю границу . Такой вывод с определенностью вытекает из следующего заявления Д. Н. Трифонова ... всю предшествующую историю системы можно рассмат-ривагь как цепь последовательных шагов, направленных на все более детальное упорядочение множества химических элементов. Менделеевский Опыт системы,.. был первым звеном в этой длинной цепи. На ее другом конце мы видим современную структуру системы . Автор однозначно определил свою позицию относительно другого конца — это таблица химических элементов. Он даже склонен канонизировать [c.167]

    При сравнении нуклеофилов, атакующие атомы которых находятся в одном периоде периодической таблицы, нуклео-фильность приблизительно совпадает с порядком основности, хотя основность контролируется термодинамически, а нуклео-фильность — кинетически. Поэтому примерный порядок нуклеофильности следующий ЫН2 >НО->ОН->Н2ЫН>АгО > >NHз>пиpидин>F->H20> 104- есть и другой ряд КзС > >Н2Ы >К0 >р- (см. т. 1, табл. 8.1). Корреляции такого типа лучше всего работают при сравнении нуклеофилов сходной структуры, как, например, в случае серии замещенных фенолятов [259]. [c.76]

    Распределение к )исталлических структур по периодической таблице (фрагмент) при 1к,шн (см. рис. 25) [c.66]

    Щелочные металлы I группы периодической таблицы — Ма, К, КЬ, Са и Рг. Их атомные номера — 3, 11, 119, 37, 55 и 87 соответственно. Чем отличается их электронная структура от электронной структуры аргоноидов,. предшествующих им в периодической таблице  [c.126]

    Установлено, что атомы главных подгрупп (подгрупп а) периодической таблицы (иными словами, все атомы, кроме атомов переходных элементов) в своих устойчивых соединениях обычно имеют аргоноидную структуру. [c.129]

    Начнем с предположенртя, что ршеется какая-либо закономерность для молекулярных орбиталей системы АНг, общая для всех атомов А, или по крайней мере для атомов, близко расположенных в периодической таблице. Так, для последовательности АНг имеем определенную информацию о структуре основного и некоторых возбужденных электронных состояний для атомов А, относящихся к 3—6-й группам периодической таблицы [2], и требуется объяснить эти данные для всей группы молекул. Возможно, наиболее важный вопрос, который в этом случае следует выяснить, — это линейна молекула или изогнута. [c.160]

    Электронная структура молекул может быть рассмотрена при помощи принципа построения (разд. 12.25), который применяется при объяснении периодической таблицы. Следуя принципу Паули, согласно которому на одной орбитали могут находиться только два электрона, электроны размещаются по орбиталям, начиная с самой низкой. Для оценки относительных энергий различных молекулярных орбиталей гомоядерных двухатомных молекул удобна корреляционная диаграмма, приведенная на рис. 14.8. При построении этой диаграммы предполагалось, что два удаленных друг от друга атома в указанном электронном состоянии сблил<аются до тех пор, пока их ядра не совпадут, другими словами — до тех пор, пока не образуется объединенный атом с удвоенным зарядом ядра. Диаграмма на рис. 14.8 основана на том представлении, что энергия орбиталей изменяется гладко при переходе от разделенных атомов к объединенным. Абсцисса представляет собой длины связей гомоядерных двухатомных молекул. При проведении линий к объединенному атому следовали принципу, согласно которому молекулярные орбитали с данным угловым моментом соединяются с атомными орбиталями объединенного атома с тем же угловым [c.438]


Смотреть страницы где упоминается термин Структура периодической таблицы: [c.390]    [c.395]    [c.103]    [c.89]    [c.49]    [c.519]   
Смотреть главы в:

Химия Справочник -> Структура периодической таблицы




ПОИСК





Смотрите так же термины и статьи:

Структуры периодические



© 2025 chem21.info Реклама на сайте