Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула энергии состояний

    Образование активированного комплекса требует затраты энергии. Вероятность того, что при столкновении двух молекул образуется активированный комплекс и произойдет реакция, зависит от энергии сталкивающихся частиц. Реагируют только те из молекул, энергия которых для этого достаточна. Такие молекулы называют активными. Необходимую для перехода веществ в состояние активированного комплекса энергию называют энергией активации [c.196]


    Процесс предиссоциации легче всего можно себе представить, рассматривая потенциальные кривые (рис. П,.6) и пользуясь при этом принципом Франка — Кондона. Кривая I в обоих случаях соответствует нормальному состоянию. В результате электронного возбуждения молекула переходит в новое энергетическое состояние, которому соответствует кривая 2. Еще большему запасу энергии соответствует кривая 3. Пока верхний колебательный уровень лежит ниже уровня О, молекула вполне устойчива, и этим переходам соответствуют полосы нормального строения. Начиная с уровня О и выше, в спектре появляются диффузные полосы. Появление их легко понять, если рассмотреть поведение молекулы, энергия колебания которой соответствует точкам, расположенным выше уровня О. Пусть при возбуждении молекула попадает на уровень Е. Колебания ядер молекулы и изменения потенциальной энергии молекулы можно сравнить с движением тяжелого шарика. Шарик, поднятый в точку на кривой 2 и предоставленный самому себе, будет двигаться со все возрастающей скоростью и, пройдя низшую точку потенциальной кривой с максимальной кинетической энергией, поднимется до точки , лежащей на том же уровне, что и точка . При обратном движении, когда шарик попадет в точку С, у него будут две возможности или катиться вниз по прежней кривой, или перейти на кривую 3, не изменив своей кинетической энергии (в соответствии с принципом Франка— Кондона). Если шарик перейдет на кривую 3, то, катясь по ней, он поднимется выше уровня О, поэтому, двигаясь обратно по этой же кривой. [c.68]

    В состоянии, соответствующем этой точке, молекулы ХУ или У2 отдельно уже не существуют. В момент прохождения максимума потенциальной энергии система из трех атомов представляет нечто целое, по своим свойствам похожее на нестойкую трехатомную молекулу. Это состояние получило название активного комплекса, или переходного состояния. При дальнейшем сближении атомов 2 и У связь 2—У усиливается, атом X отделяется от атома У, потенциальная энергия системы начинает убывать, и наконец, система переходит в конечное состояние — образуется устойчивая молекула У2, потенциальная энергия которой изображена кривой, показанной на диаграмме справа, и свободный атом X. [c.141]

    Энергетические характеристики атомов — энергия ионизации и сродство к электрону. Поведение атомов в химических процессах в значительной мере зависит от того, насколько прочно их электроны удерживаются на орбиталях. Важной характеристикой атома, количественно определяющей способность отдавать электрон, является энергия ионизации — энергия, которую необходимо затратить для отрыва электрона от атома, находящегося в нормальном состоянии. Это понятие применимо и к молекулам. Энергию ионизации обычно выражают в электронвольтах. Энергию ионизации, так же как и уровни энергии электронов в атомах, можно определить из спектральных данных. [c.31]


    Внутренняя энергия системы. Закон сохранения энергии. Любая система состоит из материальных частиц (атомов, молекул, ионов), находящихся в непрерывном движении. Движение и материя взаимосвязаны. Нет материи без движения и движения без материи. Количественной характеристикой движения является их энергия. В соответствии с формой движения частиц в системе различают поступательную и вращательную энергию молекул, колебательную энергию атомов и групп атомов в молекуле, энергию движения электронов (энергия оптических уровней), внутриядерную и другие виды энергии. Совокупность всех видов энергии частиц в системе называется внутренней энергией системы. Внутренняя энергия является частью полной энергии системы. В величину полной энергии входят внутренняя, кинетическая и потенциальная энергии системы в целом. Внутренняя энергия системы зависит от природы вещества, его массы и от параметров состояния системы. С увеличением массы системы пропорционально ей возрастает и внутренняя энергия, так как она является экстенсивным свойством системы. [c.185]

    Если вещество находится в газообразном состоянии, то вместе с возбуждением колебательного движения возбуждается также и вращательное движение молекулы. Энергия вращательно-колебательного движения равна [c.35]

    Молекула Основное состояние Колебательная частота см Межъядерное расстояние A Энергия диссоциации, 9в [c.336]

    Молекула Основное состояние Колебательная частота Л( Межъядерное расстояние г , A " Энергия диссоциации, вв [c.337]

    Спектры поглощения или испускания молекул состоят из отдельных полос, причем каждая полоса имеет большое число линий. Отдельные полосы образуют закономерные группы, которые могут повторяться в различных частях спектра, давая систему групп. Такое наличие тройных закономерностей в молекулярных спектрах (линии, полосы, группы полос) отвечает трем видам движения в молекулах вращению молекул, колебанию ядер и движению электронов. Энергия молекул складывается из трех видов энергии энергии вращения молекул, энергии колебания ядер и энергии движения электронов. При этом наименьшей оказывается энергия вращения цр молекул, несколько большей — энергия колебания ядер Е ая и наибольшей — энергия электронных переходов Соотношение между этими видами энергии, примерно, следующее Еэ Е оа-Еър = 1000 100 1. Наименьшей энергией молекула обладает в невозбужденном состоянии. Прн этом электроны находятся на самых низких [c.64]

    Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия — это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое. [c.85]

    Выведем уравнение для суммы по состояниям, обусловленной электронным движением в молекуле. Энергию электронов в молекуле можио представить в виде двух слагаемых  [c.160]

    Уравнение (IV.243) показывает, что пленки с высокой вязкостью должны проявлять свойства неньютоновских систем. Перемещение молекулы из состояния г в ближайшее свободное положение в ряду молекул, параллельном направлению потока, сопровождается временным смещением молекул из соседних рядов. Если более удаленные молекулы смещены из состояния I прежде, чем другие молекулы возвратились в свои первоначальные положения, энергия активации, связанная с начальным смещением, несколько меньше АР и дается как АР[ [c.292]

    Последняя представляет энергию (на 1 г-мол), необходимую для активирования молекул до состояния, при которо.м они становятся способными к реакции. [c.31]

    Испускание или поглощение электромагнитного излучения атомами и молекулами приводит к изменению их внутренней энергии. Состояние атома или молекулы с минимально возможной внутренней энергией называется основным, а все остальные состояния — возбужденными. Внутренняя энергия является величиной дискретной (квантовой), поэтому переход атома или молекулы из одного состояния в другое сопровождается всегда скачкообразным изменением энергии, т. е. получением или отдачей порции (кванта) энергии. [c.5]


    Поэтому поглощенная молекулой лучистая энергия может вызвать или переход электрона с одного энергетического уровня па другой, энергия которого выше, или привести к колебанию и вращению атомов в молекуле. Другими словами, поглощенная молекулой энергия (в виде излучения), вызывая изменение этих энергетических состояний, приводит к возникновению электронных, колебательных или вращательных спектров. Таким образом-, спектр — это количественное распределение электромагнитного излучения по длинам волн или частотам колебания, а значит, и по энергиям. [c.124]

    Для некоторой двухатомной молекулы сумма состояний при 1000 К равна 10 °. Рассчитайте энергию Гиббса (G—Go) 1 моль данного двухатомного газа. [c.26]

    Существует теорема Крамере а, согласно которой у систем с четным число.м неспаренных электронов низшее по энергии состояние в нулевом поле соответствует т,з=0, как и показано на рис. П1.8, б для триплетного состояния молекул. Более высокие по энергии состояния из-за электростатического и спин-орбитального взаимодействия могут быть в отличие от случая, представленного на на рис. 1П.8, б, и не вырождены в отсутствие внешнего магнитного поля. Для анизотропных систем с нечетным числом неспаренных электронов при расщеплении в нулевом поле произвольной симметрии всегда существуют по крайней мере дважды вырожденные состояния. Это вырождение, называемое крамерсовским, снимается внешним магнитным полем, как показано на рис. П1.8, б для системы с электронным спином 5=1 и на рис. П1.9 для системы со спином 5 = 3/2. [c.64]

    Описанные явления объясняются квантовой теорией. Излучение возникает при переходе молекулы из состояния с большей энергией в состояние с меньшей энергией. При таком переходе излучается квант [c.246]

    Для всех колебательных уровней у большинства молекул Поэтому в соответствии с (XV, 3) для двухмерного осциллятора (двухатомная молекула) сумма состояний колебательной энергии, превышающей энергию нулевого состояния, равна [c.509]

    Если вещество находится в газообразном состоянии, то вместе с возбуждением колебательного движения при поглощении квантов света происходит возбуждение и вращательного движения молекул. Энергия вращательно-колебательного движения равна сумме энергий вращательного и колебательного движений  [c.12]

    В выражениях (V, 26) и (V, 27) величины Д(У и ЛИ — не экспериментально определяемые энергии активации, а изменения внутренней энергии и эн -альнпи при переходе исходных молекул в состояние активного комплекса. Для практических расчетов целесообразно ввести в эти выражения экснерн-ментально определяемую энергию активации. Если в качестве независимых переменны.х выбрать давление и температуру, то для расчета скорости реакции удобно пользоваться уравнением (V,27). [c.149]

    Посмотрим, будут ли совпадать результаты расчетов скоростей реакции методом столкновений с результатами расчетов методом активного комплекса, если будут реагировать не атомы, а молекулы. Для этого упростим задачу, считая, что для каждого вида энергии сложной молекулы сумма состояний состоит из одинаковых множителей, по одному на каждую степень свободы. Обозначив поступательную, вращательную и колебательную суммы состояний на одну степень свободы соответственно через QIIo т. Уврат. и <5иолео-, ДЛЯ ПОЛНОЙ суммы СОСТОЯНИЙ получнм выражение  [c.152]

    Для двухатомных молекул энергия связи равна энергии диссоциации. Для многоатомных молекул с одним типом связи, например для молекул АВ , средняя энергия связи равна 1/п-й части энергии распада молекулы на атомы -(энергия атомизации)., При расчетах энергии связи подразумевается, что исходная молекула и продукты ее распада находятся в невозбужденном состоянии прц абсолютном нуле и обладают с130йствами идеального газа. Так, энергия, поглощаемая в процессе [c.59]

    В химической термодинамике одну из важнейших величин представляет внутренняя энергия и рассматриваемой системы. Эта величина является параметром состояния. Термодинамически она строго определяется на основе первого закона (см. 68). Физически же этим термином обозначается величина, которая характеризует общий запас энергии системы, включая сюда энергию по ступательного и вращательного движения молекул, энергию внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергию вращения электронов в атомах, энергию, заключающуюся в ядрах атомов, и другие виды энергии, но без учета кинетической энергии тела в целом и его потенциальной энергии положения. В настоящее время еще не имеется возможности определить абсолютную величину внутренней энергии какой-нибудь системы, но большей частью можно измерить изменениё энергии Л(7, происходящее в том или ином процессе, что оказывается уже достаточным для успешного применения этого понятия в термодинамике. Величина А11 считается положительной, когда в рассматриваемом процессе внутренняя энергия системы возрастает. [c.181]

    Следует отметить, что в первоначальной схеме Линдемана понятие активированной молокулы АВ не вводилось. Это понятие было введено в теорию в связи с необходимостью учесть тот факт, что для осуществления мономолекулярного превращения нужно, чтобы энергия активной молекулы сосредоточилась 1са определенных степенях свободы. Активированная молекула отвечает состоянию активированного переходного комплекса в соответствии с определением последнего в рамках метода переходного состояния, представляя некоторое мгновенное состояние активной молекулы, переход через которое означает завершение реакции. [c.107]

    В многоатомных молекулах квантовые состояния хау актеризуются не потенциальными кривыми, а потенциальными поверхностями. Неустойчивым состояниям отвечают области потенциальных поверхностей с энергией, превышающей энергию продуктов диссоциации молекулы. [c.158]

    На основании представления о гибридизованных АО углерода субстрата, реагента и активированного комплекса Витвицкий 1242] предложил метод количественной оценки энергии активации реакций (15.1). Проще всего этот метод проиллюстрировать на примере реакции Н(1) + К(2)Н- К(1)Н К(2) + (3, в которой реагирующий атом углерода исходного радикала находится в гибридном р -состоянии, а атом углерода исходной молекулы — в состоянии 5р . Для отрыва Н-атома от 5/7 -гибридизованного атома углерода субстрата необходимо, чтобы валентная оболочка этого атома перешла в 5р -гибридизованное состояние, что требует затраты 57,5 кДж-моль- 1242]. Поэтому с учетом теплоты реакции энергетический барьер, который должна преодолеть исходная система, равен [c.154]

    Если состояние молекулы дойдет до высшего квантового уровня Утях, то расстояние г между колеблющимися атомами станет столь большим, что произойдет диссоциация молекулы энергия диссоциации будет равна д. [c.73]

    При дальнейшем повышении температуры начинают устанавливаться химические связи, и наступает момент, когда энергия тепло -вого движения становится соизмеримой с энергией взаимодействия высокомолекулярных соединений. В этом случае, несмотря иа наличие межмолекулярного взаимодействия, возможно изменение взаимного расположения отдельных частей (сегментов) сложных молекул. Такое состояние именуется высокоэластичным . При дальнейшем повышении температуры энергия взаимодействия молекул и их частей становится настолько большой, что она начинает значительно превышать энергию теплового движения, длительность установления равновесной конфигурации молекул возрастает, начиная с некоторой температуры структура фиксируется, осуи1еств-ляется переход от равновесной к неравновесной структуре амор( )-ного вещества, т. е. происходит стеклование. Наиболее отчетливо этот процесс прослеживается по изменению концентрации асфальтенов в системе, 1к которых формируются надмолекулярные структуры. В зависимости от растворяющей способности среды концентрация асфальтенов в системе сначала повышается, проходит через максимум и затем падает. [c.166]

    Каждый электронный переход вызывает изменение к леба1ель-ного и соответственно вращательного состояния. Хотя гомоядерные двухатомные молекулы не дают чисто колебательных и чисто вращательных спектров, в электронном спектре проявляется вращательная и колебательная структура в виде серий полос, отвечающих электронным переходам. Чем больше поглощенная энергия, тем более сближаются полосы. Возбуждение электронов приводит к возбуждению колебательных состояний и далее к диссоциации молекулы на невозбуждениый и возбужденный атом. Если сообщенная молекуле энергия превышает энергию, необходимую для этого процесса, то избыток ее идет на увеличение кинетической энергии атомов. Спектр поглощения газообразных атомов является непрерывным, поэтому у границы сходимости полос возникает область сплошного поглощения (континуум). Волновое число этой границы гр (также Умакс) определяет энергию перехода от невозбужденной молекулы к атомам, один из которых возбужден. Вычтя из этой энергии энергию электронного возбуждения атома Дбат, получим энергию диссоциации молекулы на невозбужденные атомы Во (рис. XXIX. 5). [c.346]

    Полосы на спектрах, расположенные в диапазоне видимого и ультрафиолетового излучения, возникают в результате взаимодействия вращательных, колебательных и электронных переходов и имеют сложную структуру. На рис. А.23 и А.24 приведена упрощенная схема термов двухатомной молекулы. На рис. А.23 дана схема основного состояния с колебательными и вращательными уровнями энергии. Диссоциированная молекула, атомы которой могут принимать любое количество кинетической энергии, соответствует заштрихованным областям (рис. А.23 и А.24). Вращательные термы приведены в другом, значительно меньшем масштабе. На рис. А.24 показаны аналогичные термы электронных переходов возбужденной молекулы. Полоса электронных переходов состоит из ряда полос, соответствующих различным колебательным переходам, а те в свою очередь имеют тонкую структуру, связанную с вращением молекул. Энергию диссоциации молекулы можно определить, установив частоту, при которой полосатый спектр переходит в сплошной, однако при этом следует учитывать энергию возбуждения образовавшихся атомов. Положение колебательных уровней при электронных переходах в молекуле определяется принципом Франка — Кондона при электронных переходах расстоя- [c.66]

    Электронная структура — это сведения о состоянии и характере движения электронов в молекуле состав и вид волновых функций, описывающих движение электронов, энергия электронов, распределение электронной плотности в пределах молекулы, энергии взаимодействия отдельных атомбв и целых групп атомов, различные виды энергии молекулы в целом и др. [c.98]

    Отщепление атома от многоатомной молекулы. Энергия активации такой реакции равна прочности разрываемой связи. Рассмотрим изменение (по теории активированного комплекса). Энтропия активированного комплекса изменяется по сравнению с исходной молекулой за счет изменения вращательной суммы состояния и изменения частот колебания. Если отщепляется легкий атом, например Н, то вращательная сумма состояний практически не меняется. Однако если отрывается тяжелый атом, например I от H3I, то удлинение связи С — I приводит к возрастанию энтропии (при 600 К на Дж/К). Кроме того, в переходном состоянии ослабляются деформационные колебания, в результате чего энтропия возрастает. Так, для распада H3I расчет (600 К) дает за счет деформационных колебаний увеличение A S на [c.97]

    Радиационная химия изучает хи.мнческие превращения, происходящие при воздействии ионизирующих излучений. Действие всех видов радиационного излучения п конечно.м счете сводится к взаимодействию заряженных частиц с электронами вещества, поэтому химический эффект действия различных излучений в значительной мере одинаков. Наиболее существенное отличие радиационно-химических реакций от фотохимических связано с неизбирагельным характером поглощения ионизирующего излучения. В то время как свет поглощается, если его частота соответствует частоте поглощения молекулы, энергия радиации поглощается всеми молекулами, вызывая акты ионизации и переводя молекулы в возбужденное состояние. Сохраняя все преимущества фотохимического инициировании (слабая температурная зависимость, отсутствие загрязнений в реакционной среде и др.), радиационное инициирование не накладывает каких-либо особых требований на реакционную среду. Эта среда может быть многокомпонентной, непрозрачной, находиться в разных агрегатных состояниях, кроме того, конструкция реактора может быть произвольной. [c.261]

    Рнс. XXII.4. Энергия атомной (а) н нонной (б) молекул (энергия диссоциацин в основном состоянии) [c.485]


Смотреть страницы где упоминается термин Молекула энергии состояний: [c.57]    [c.38]    [c.108]    [c.112]    [c.293]    [c.214]    [c.13]    [c.112]    [c.207]    [c.96]    [c.227]    [c.34]    [c.107]   
Теоретическая неорганическая химия (1969) -- [ c.160 , c.161 ]

Теоретическая неорганическая химия (1971) -- [ c.154 , c.156 ]

Теоретическая неорганическая химия (1969) -- [ c.160 , c.161 ]

Теоретическая неорганическая химия (1971) -- [ c.154 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Краткий обзор аддитивных схем расчета энергий основных состояний молекул

Молекулы состояние

Составляющие энергии и энтропии, зависящие от электронного состояния молекул

Углерод. Насыщенные и ненасыщенные молекулы. Аллотропия углерода. Уровни энергии. Испарение графита. Диаграмма состояний углерода

Энергии молекул галогенидов и гидридов щелочных металлов в газообразном состоянии

Энергия молекул

Энергия разрыва связей (энергия диссоциации) газообразных молекул при 0 К в основном состоянии

Энергия состояния

Ядерные конфигурации и энергии возбужденных электронных состояний молекул



© 2025 chem21.info Реклама на сайте