Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флюоресценция

    Контроль за хроматографическим разделением анализируемых смесей можно осуществлять различными способами. Если разделяемые вещества окрашены, то анализ веществ можно проводить непосредственно (визуально) на колонке в слое адсорбента появляются окрашенные зоны (слои). Если же вещества не-окрашены, но люминесцируют (при освещении их УФ излучением) или вызывают флюоресценцию некоторых индикаторов, вводимых предварительно в адсорбент, то идентификация таких веществ также не представляет особого затруднения. Можно регистрировать разделяемые вещества непосредственно после выхода из колонки. Например, для веществ, обладающих кислыми свойствами, можно использовать цветную реак- цию с индикатором. Иногда проводят анализ каждой порции элюата с помощью различных физико-химических методов (спектрофотометрического, потенциометрического, рефрактометрического и др.). [c.158]


    Если диссоциация молекул на атомы обусловлена первой причиной, то она похожа на уже рассмотренный процесс индуцированной диссоциации. Возможность такого процесса передачи энергии подтверждается тушением кислородом флюоресценции адсорбированных на поверхности твердых тел красок. Под влиянием аналогичного действия поверхности происходит, по-видимому, диссоциация молекул галогенов на нагретых твердых поверхностях. [c.82]

    Электронные спектры — это спектры поглощения, испускания и флюоресценции. Спектр поглощения возникает при переходе обычно одного электрона с занятой МО на свободную вплоть до отрыва (спектр ионизации). Кванты, вызывающие электронный переход, велики, и частоты переходов в спектрах лежат в видимой и ультрафиолетовой областях. Для молекулы возможен ряд возбужденных состояний, каждое из которых описывается своей потенциальной кривой. Возбужденному состоянию отвечает обычно меньшая энергия диссоциации и большее межъядерное расстояние. При переходе в возбужденное отталкивательное состояние молекула диссоциирует. [c.166]

    Для применяемых фильтров ставят обязательное условие способность поглощения ультрафиолетовой части ртутного спектра, вызывающей флюоресценцию исследуемых проб. В качестве фильтра применяют слой толщиной 5 МЛ1 насыщенного раствора азотистокислого натрия в воде. [c.554]

    В дальнейшем жидкость из приемника переводят в рабочую часть кюветы А, медленно испаряя ее. Такая дистилляция необходима для очистки продукта от возможных взвесей, дающих флюоресценцию. [c.554]

    При добавлении в продукт нескольких капель нитробензола можно избежать флюоресценции. [c.554]

    Однородная прозрачная жидкость от желтого до коричневого цвета с флюоресценцией [c.169]

    Ди-(2-нафтил)этан получ ют алкилированием нафталина ацетиленом в четыреххлористом углероде. 1,1-Ди-(2-нафтил)этан — очень-вязкое, прозрачное вещество с зеленой флюоресценцией т. кип. 236—238 " (3 мм)] n D 1,6760 [365]. [c.188]

    В. Н. Кондратьев предположил, что эти полосы принадлежат формальдегиду [68], а в 1936 г. ему удалось прямым путем показать тождественность спектров холодных пламен со спектром флюоресценции формальдегида [69]. Таким образом, все спектры холодных пламен обусловлены одним и тем же носителем — формальдегидом. [c.80]

    Излучение от источника (рис. 56) проходит светофильтр 2 для выделения возбуждающего излучения, а собственная флюоресценция образца 5 наблюдается после светофильтра 4 в окуляр 6. [c.124]

    Энергия водородной связи, обусловливающая взаимодействие молекул в растворе, невелика она составляет всего от 16-10 до 33-10з Дж/моль (4,0 до 8,0 ккал/моль), поэтому ее влияние не может проявиться в электронных спектрах, а только в колебательных и вращательных спектрах. Вот почему такие исследования следует проводить с помощью инфракрасных спектров и спектров комбинированного рассеяния. Кроме того, влияние может проявиться, как показал С. И. Вавилов, в спектрах флюоресценции. [c.253]


    В микроскопах МЛ-2 и МЛ-3 флюоресценция возбуждается ультрафиолетовым излучением они снабжены также фазовоконтрастными устройствами К-4 и КФ-5. [c.124]

    Изображение препарата в ультрафиолетовых лучах, создаваемых ртутно-кварцевой лампой, выделяется из общего потока лучей светофильтром и проектируется объективом микроскопа и добавочным проекционным объективом на тонкий флюоресцирующий экран, на котором оно рассматривается в свете флюоресценции через второй микроскоп — окуляр, снабженный обычной стеклянной оптикой. В качестве первого объектива микроскопа применяются сменные ультрафиолетовые ахроматические объективы различных увеличений. [c.125]

    Ослабление или рассеяние р- и у-излучения веществом — неспецифичное свойство, так как эти процессы характерны для атомов, имеющих средние значения зарядов ядер. Однако при проведении анализа с использованием явления флюоресценции проявляются характерные свойства элементов или их групп при взаимодействии их с применяемым в анализе излучением. При этом происходит резкое изменение коэффициента ослабления при энергиях, соответствующих энергиям связи электронов на К-, L- или М-оболоч-ках соответствующих атомов. По достижении энергии, соответствующей [c.323]

    Возможны два пути перехода частицы из возбужденного состояния в основное (рис. 2.2). Первый путь — это непосредственный переход в основное состояние, в результате чего развивается резонансная люминесценция (раньше это явление называли флюоресценцией). [c.54]

    Продолжительность люминесценции связана с тем, что электрону, находящемуся в зоне проводимости, требуется некоторая дополнительная энергия (энергия активации) для перехода на основной энергетический уровень и взаимодействие электрона с дыркой в валентной зоне также протекает не мгновенно. По длительности свечения различают резонансную люминесценцию, или флюоресценцию, и спонтанную люминесценцию или фосфоресценцию (см. 7). [c.190]

    Влияние растворителей на спектры флюоресценции [c.253]

    Совместно с В. А. Кремером автор исследовал влияние растворителей на спектры флюоресценции салициловой кислоты и основного красителя родамина В (экстра). Оказалось, что спектры флюоресценции как салициловой кислоты, так и основного красителя родамина В изменяются под влиянием растворителей. [c.253]

    Почти во всех гидроксилсодержащих растворителях относительная интенсивность спектров флюоресценции недиссоциированной салициловой кислоты одинакова, а в растворителях, ие содержащих гидроксильных групп — в дифференцирующих растворителях, также одинакова, но отличается от предыдущей. Таков же характер влияния растворителей на спектры флюоресценции анионов салициловой кислоты. [c.254]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Таким образом, оказывается, что влияние двух видов растворителей на оптические свойства различно, что по влиянию на спектры флюоресценции они группируются так же, как и по их способности к образованию продуктов присоединения. [c.254]


    Наряду с переходами с излучением в ионизированном атоме возможны переходы без излучения, при которых энергия возбуждения этого атома расходуется на вырывание еще одного электрона. Например, если из К, Ь,... оболочки атома удален электрон, го образовавшаяся положительная дырка может заполниться электроном из L. М,... оболочки. Этот переход либо сопровождается флюоресценцией, либо происходит без излучения. В последнем случае освободившаяся энергия может вызывать вторичный эффект выброса электрона с оболочек, обладающих более высокой энергией (М, Л, ...). Этот электрон называют оже-электроном, эффект — внутренней конверсией или эффектом Оже, а раздел спектроскопии, исследующий энергию таких электронов, — оже-спеКТ рос копией. [c.265]

    Явление резонансной флюоресценции было предсказано в начале века и осуществлено в оптическом диапазоне спектров. Однако попытки получения аналогичного поглощения при ядерных переходах, сопровождающихся "у-излучением, были безуспешными до 1958 г., когда Мессбауэром был открыт эффект -резонансной флюоресценции. [c.336]

    Исследования термолюминесценции и флюоресценции трехкальциевого силиката показали, что минерал как в чистом виде, так и легированный примесными ионами Т1 +, Сг +, Мп +, Ре +, Со + и N 2+ является сильно возбужденным телом при охлаждении от 1823 К до комнатной температуры. Активированные образцы обладают наиболее сильными термолюминесцентными свойствами, связанными с освобождением электронов, захваченных на метастабильных уровнях. [c.236]

    ФЛЮОРЕСЦЕНЦИЯ ОХЛАЖДЕННЫХ ВЕЩЕСТВ [c.20]

    Для молекулы, находящейся на высоком колебательном уровне в возбужденном электронном состоянии, есть две возможности или вернуться на более низкий энергетический уровень за счет излучения света, или же перейти в состояние, где уровни ее энергии окажутся в континууме н вследствие этого избыток энергии пойдет на разрыв химической связи, т. е. произойдет диссоциация. Таким образом, если переход от дискретной системы уровней к сплошной разрешен соответствующими правилами отбора, то наступление предиссоциации должно выразиться не только в том, что исчезнет вращательная структура полос, но и в том, что произойдет уменьшение интенсивности флюоресценции. Последнее можно использовать для фиксирования предиссоциации. Во многих случаях этот метод установления предиссоциа-дии оказывается более удобным, чем обнаружение расширения вращательных линий в полосе. Например, при облучении NHa светом, длина волны которого соответствует области предиссоциации, полностью исчезает флюоресценция аммиака и распад аммиака уже не зависит от давления. Эти факты совершенно однозначно указывают на то, что диссоциация аммиака происходит непосредственно после поглощения света, а не -в результате дополнительного влияния столкновения молекул друг с другом. [c.68]

    Интересной и хорошо изученной является предиссоциация молекулы двуокиси азота, для которой реализуются оба рассмотренных выше случая наблюдаются две области предиссоциации. Постепенное размывание линий в полосе наблюдается при Л=3800А и затем при Л=2459А (рис. И, 7). В первой области возникают молекула окиси азота и нормальный атом кислорода, Вторая область предиссоциации соответствует образованию окиси азота и возбужденного атома кислорода в состоянии В области предиссоциации, когда полностью затухает флюоресценция, фотохимическая диссоциация молекулы идет с квантовым выходом 2. Это позволяет предположить, [c.69]

    В некоторых процессах энергия возбужденных молекул (атомов, радикалов) может рассеиваться в виде световой. Это светоиснускание носит общее название люминесцерщии (медленное окисление фосфора или гниющей древесины, свечение светлячков или глубоководных рыб и др.). Поглотившая квант света возбужденная молекула может практически ахгновенно (за 10" — 10 с) испустить его и дезактивироваться. Такое явление называется флюоресценцией. Однако молекулы некоторых веществ способны также к переходу в метастабильное состояние, не связанное с излучением, имеющее значительно большее среднее время жизни (вплоть до 1 с). Свечение, сопровождающее переход из метастабильного состояния в исходное, называется фосфоресценцией, а способные к нему вещества — фосфорами. Оно может продолжаться несколько секунд после прекращения облучения. [c.269]

    Как уже указывалось, для того чтобы процесс предиссоциации был возможен, необходимо соблюдение правил отбора. Эти правила могут быть нарушены путем помещения молекулы в электрическое или магнитное поле. Так, например, флюоресценция паров иода, возбужденных зеленой ртутной линией, может быть нотушена достаточно интенсивным магнитным полем. Как показывают опыты, а также характер потенциальных кривых, при этом происходит диссоциация молекулы иода на атомы. При отсутствии магнитного поля этот процесс запрещен правилами отбора. При наложении магнитного ноля в данном случае снимается правило, требующее постоянства момента количества движения (Д/=0), и вследствие этого становится возможной предиссоциация. Такое явление получило название магнитного тушения флюоресценции. [c.70]

    Измерение абсолютных концентраций при помощи метода резонансной флуоресценции тр( бует знания вероятности возбуждения изучаемых частиц, тушения их флуоресценции и радиационного времени жизни т. Измерение интенсивности резонансной флюоресценции нри известном т позволяет определить концентрацию возбужденных частиц, которая всегда значительно меньше концентра 1,ин мевозбужденных частиц. Нахождение же числа последних, представляюп1 пх основной интерес с точки зрения кинетики и механизма изучаемой реакции, требует донолиительпых исследований. В самом общем случае между концентрацией возбужденных п и невозбужденных п молекул данного вещества существует соотношение [c.25]

    Перед проведением ректификации проверяют качество герметичности кожуха колонны с помощью высокочастотного течеиска-теля. При герметичности кожуха (в затемненном рабочем помещении) в его полости не должно возникать свечения, возможна зеленая флюоресценция стеклянных стенок кожуха. Если возникает свечение, проводят повторное вакуумирование. Для этого используют трехступенчатый диффузионный ртутный насос. Пары ртути вымораживают в глубокоохлаждаемом адсорбере с активным углем или силикагелем, установленном между насосом и колонной. Для смазки кранов применяют высоковакуумную смазку (см. разд. 9.4). При достижении высокого вакуума, соответствующего остаточному давлению 10" мм рт. ст. и ниже, кран закрывают. [c.252]

    Спектральная направленная пропускательная способность т(0 , ф-, X, Т ) определяется аналогичным образом, но с дополнительным условием о том, что состояние стенки близко к термодинамически равновесному, характеризуемому температурой Г. Для стенки, пропускающей излучение, нредиавление о наличии поверхности т (см. рис. 1, 2.9.1) неприменимо. В приведенных определениях не предусмотрена возможность фосфоресценции или флюоресценции. [c.457]

    Сероводород в небольших концентрациях (до 0,05 млн ) можно определить с флюоресцин-ацетатом ртути в 0,01 н. растворе едкого натра с последующим измерением флюоресценции на фото-флюометре. [c.101]

    А цетилантрацен. В колбе, снабженной мешалкой с ртутным затвором и обратным холодильником, растворяют 150 г антрацена (марки синяя флюоресценция ) в 9Шмл сухого бензола и прибавляют 360 тил хлористого ацетила. Охлаждают раствор до —5—0° и, поддерживая эту температуру, прибавляют порциями 225 г хлористого алюминия. Перемешивают еще полчаса после окончания прибавления, затем дают температуре подняться до 10°. Твердый красный комплекс отфильтровывают, применяя фильтр из пористого стекла, промывают бензолом и переносят в смесь льда и соляной кислоты. Выделившееся при этом вещество отделяют и присоединяют к остатку, полученному упариванием досуха в вакууме жидкого органического слоя, образовавшегося при разложении комплекса. Перекристаллизовывают сначала из кипящего спирта, а затем из этилацетата в присутствии активированного угля. Выход 9-ацетилантрацена с т. пл. 74—76° колеблется от 73 до 156 г (39,4—84,1% от теорет.) [383]. [c.191]

    Отечественные люминесцентные микроскопы МЛ-3, МЛД-1, МЛ-2 имеют также осветители для люминесцентной микроскопии. Для количественных измерений в лучах флюоресценции имеется фотометрическая насадка МФЭЛ-1, а такл<е микроспектрофлюоли-метр МЛИ-1, позволяющие наблюдать интенсивность флюоресценции микроструктур объекта. [c.124]

    В качестве светового микроскопа применяется исследовательский микроскоп — вариант прибора Zetopan, дающий возможность проводить исследования в проходящем или отраженном свете в светлом и темном поле, при фазовом контрасте, поляризации света и флюоресценции. С помощью прибора можно идентифицировать частицы, определить их количество, площадь и длину, про- [c.129]

    Основное отличие флюоресценции от фосфоресценции состоит в том, что флюоресценция происходит в течение очень короткого промежутка времени ( 10" с), это быстрозатухающая (резонансная) люминесценция. Фосфоресценция — длительная (спонтанная) люминесценция — происходит в течение значительно большего промежутка времени. Вещество (обычно кристаллы или жидкости) может фосфоресцировать в течение нескольких секунд и даже часов после прекращения облучения. [c.54]

    Метод физико-химического анализа применим как к гетерогенным, так и к гомогенным системам. При построении диаграмм гомогенных систем используются многие свойства тепловые (теплоемкость, тепловые эффекты н т. д.), механические (плотность, коэффициент трения, твердость), оптические (оптическая плотность, показатель преломления, интенсивность флюоресценции и т. д.), электрические (электропроводность, электродвижуп ие силы и т. д.), магнитные, акустические и др. Кроме того, используются свойства, характеризующие переход одной фазы в другую давление пара, температура кипения, растворимость и т. д. [c.224]

    Важно отметить, что спектры флюоресценции салициловой кислоты в бензоле с добавками различных растворителей совпадают со спектрами флюоресценции кислоты в этпх чистых растворителях. Спектр раствора салициловой кислоты в бензоле с добавками метилового спирта совпадает со спектром, который имеет салициловая кислота в метиловом спирте. Этот вывод важен потому, что состав соединений между салициловой кислотой и растворителем, например этиловым спиртом, установлен в бензоле криоскопическим путем, и всегда может возникнуть сомнение, то ли самое соединение образуется в чистом спирте, что и в бензоле в присутствии спирта. На основании спектральных данных можно сделать вывод, что в бензоле в присутствии неводного растворителя образуются те же соединения, что и в самом неводном растворителе. [c.254]

    В виде )елеевского рассеяния проявляется только 10 интенсивности падающего света и только около 10 в виде комбинационного рассеяния. Поэтому эксперименты по рассеянию света требуют очень интенсивных источников излучения. Ранее в качестве источника излучения использовали наиболее интенсивные линии ртутного спектра. В настоящее время для этой цели используют лазеры. Осложняющими факторами могут быть разложение образна ири поглощении м0Н0хр0матическ010 света и появление флюоресценции. [c.274]


Смотреть страницы где упоминается термин Флюоресценция: [c.495]    [c.496]    [c.510]    [c.78]    [c.151]    [c.54]    [c.151]    [c.39]    [c.62]   
Свободные радикалы (1970) -- [ c.61 ]

Химия справочное руководство (1975) -- [ c.477 ]

История химии (1975) -- [ c.375 ]

Строение неорганических веществ (1948) -- [ c.188 ]

Учение о коллоидах Издание 3 (1948) -- [ c.56 ]

Физическая химия Том 2 (1936) -- [ c.512 , c.514 ]

Электрические явления в газах и вакууме (1950) -- [ c.320 ]

История химии (1966) -- [ c.361 ]

Физическая химия Книга 2 (1962) -- [ c.0 ]

Физическая химия (1967) -- [ c.688 , c.698 ]

Физиология растений (1980) -- [ c.108 , c.109 , c.122 ]




ПОИСК







© 2025 chem21.info Реклама на сайте