Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен нестационарный

    Рассмотрим основные элементы этого процесса. При этом необходимо учесть, что различают два режима передачи тепла стационарный (установившийся) и нестационарный (неустановившийся). Мы ограничимся рассмотрением только стационарного режима. Стационарным, или установившимся, режимом передачи тепла считают такой режим, когда с течением времени в каждой точке тела, участвующего в теплообмене, температура (температурное поле) не меняется. ,  [c.49]


    Оптимальное периодическое управление температурой на входе адиабатического слоя катализатора. Предположим, что для описания нестационарного процесса в слое можно а) пренебречь продольным переносом тепла и вещества в газовой фазе за счет эффективной продольной теплопроводности и диффузии б) внутри пористого зерна катализатора практически отсутствуют градиенты температур в) можно не учитывать тепло- и массоемкость зерна и свободного объема слоя, так как будут рассматриваться процессы с характерными временами, гораздо большими, чем масштабы времени переходных режимов в газовой фазе теплообмен на границах слоя несуществен. Тогда в безразмерном виде математическую модель нестационарного процесса в слое можно записать так  [c.132]

    Нестационарный теплообмен через стенки реактора. Физическая схема данного фрагмента ФХС и соответствующая связная диаграмма показаны на рис. 2.15. Здесь левая и правая 1-струк-туры с Т-элементами отражают потоки тепла соответственно от фазы I к стенке реактора и от стенки к фазе II. Тепловая емкость самой стенки моделируется 0-структурой с емкостным элементом (С-элемент). Автоматизированный вывод определяющих соотношений нестандартного теплообмена через стенку аппарата на основе построенной связной диаграммы будет рассмотрен в третьей главе при изложении процедуры формирования системных уравнений. [c.156]

    В последнее время появилось значительное число теоретических и экспериментальных работ, из которых следует, что для большого класса процессов можно создавать нестационарные режимы, значительно превосходящие по эффективности стационарные. К таким процессам относятся массо- и теплообмен, адсорбция, ректификация, сепарация твердых частиц на фракции, разделение смесей жидкости или газа на основании принципа динамической сепарации. Искусственно создаваемое пульсирующее горение твердого топлива приводит к интенсификации процесса окисления, улучшению теплообмена, уменьшению расхода энергии на тягу и дутье, позволяет работать при малых избытках воздуха или кислорода, снижает концентрацию оксидов азота, способствует хорошей очистке поверхности теплообмена. [c.302]

    В последнее время появилось значительное число теоретических и экспериментальных работ, из которых следует, что для большого класса процессов можно создавать нестационарные режимы, значительно превосходящие по эффективности стационарные. К таким процессам относятся массо- и теплообмен, адсорбция, ректификация, сепарация твердых частиц на фракции, разделение смесей жидкости или газа на основании принципа динамической сепарации. Искусственно создаваемое пульсирующее горение твердого топлива при- [c.3]


    Уравнения (1.1.25), (1.1.26) образуют замкнутую систему, описывающую нестационарный теплообмен с учетом тепловой емкости стенки, разделяющей теплоносители. Граничными условиями для этой системы уравнений служат равенства (1.1.15). [c.11]

    Катализатор, кроме своей основной функции ускорителя химической реакции, выполняет роль регенеративных теплообменников. Это позволяет практически полностью исключить теплообменное оборудование, что снижает металлоемкость контактных узлов для различных процессов в 3—20 раз. Так, на 1 т/сут вырабатываемой серной кислоты требуется 20—25 теплообменной поверхности для предприятий, производящих серную кислоту из серы или серного колчедана. При переработке отходящих газов цветной металлургии эта величина достигает 50 м . Для реактора мощностью - 1000 т/сут серной кислоты масса теплообменников составляет 1000—2000 т. Потребность в этих теплообменниках для реакторов, работающих в нестационарном режиме, отпадает. [c.122]

    Контактный узел нестационарного окисления обладает в 6 раз меньшей металлоемкостью, поскольку не включает в себя теплообменную аппаратуру и имеет, как уже отмечалось, более низкое гидравлическое сопротивление. [c.196]

    Теплообмен со стационарным и нестационарным потоками тепла. При стационарном потоке тепла температурный режим в любых сечениях теплообменивающихся сред не меняется во времени. При нестационарном потоке тепла, имеющем место в случае периодического нагрева или охлаждения твердого материала, температурный режим с течением времени меняется. [c.594]

    В первых четырех главах рассмотрен стационарный массо- и теплоперенос к каплям и пузырям (главы 1 и 2) и к твердым частицам (главы 3 и 4) при больших числах Пекле в отсутствие объемных химических реакций при диффузионном режиме химической реакции на меж-фазной поверхности. При этом сначала рассматриваются частицы простой формы (сфера, цилиндр) в потоке простой структуры. Далее исследуется влияние изменения формы частиц, усложнения структуры потока, взаимодействия частиц между собой. В главе 5 учитывается влияние поверхностной или объемной химической реакции, протекающей с конечной скоростью при больших числах Пекле. Массо- и теплообмену реагирующих частиц с потоком газа (малые числа Пекле) посвящена глава 6. Содержание главы 7 составили нестационарные задачи массо- и теплопереноса. [c.7]

    Под названием внешняя гидродинамика кипящего слоя мы объединяем все явления взаимодействия потока газа (жидкости) со слоем в целом — критические скорости начала псевдоожижения и уноса, закон расширения слоя. К внутренней гидродинамике кипящего слоя относятся явления, обусловленные нестационарными движениями твердой фазы и ее перемешиванием внутри слоя, дисперсия скоростей и перемешивание в газовом потоке, механизм переноса импульса, теплоты и массы. Перенос теплоты от кипящего слоя к стенкам аппарата или погруженным в него поверхностям принято называть внешним теплообменом , в отличие от межфаз-ного теплообмена между зернами и проходящим потоком газа [c.7]

    В нестационарном потоке величины а отличаются от квази-стационарного из-за пульсации давлений и скоростей газа. Однако для практических расчетов температуры газа с учетом и без учета влияния пульсаций на теплообмен оказывались в конечном итоге очень близкими. [c.102]

    Печам свойственно весьма сложное поле температур. Если поле температур неизменно во времени, то режим работы печи называется стационарным, в противном случае — нестационарным. Как указывалось в гл. II, в порядке идеализации иногда можно предположить, что температура поверхности нагрева всюду одинаковая и равняется некоторой средней величине. Такое же предположение можно сделать для температуры пламени, поверхности кладки и, таким образом, свести задачу к теплообмену между этими поверхностями. Дальнейшим шагом упрощения является введение условного понятия эффективной температуры Г ф, применяемого в расчетах печей. [c.253]

    В непрерывно-действующих теплообменных аппаратах нестационарный перенос тепла возникает лишь кратковременно в периоды пуска, остановки или изменения режима их работы. В таких условиях аппараты рассчитывают только для основного, стационарного режима теплообмена описанными выше методами. Вместе с тем в ряде случаев (при расчетах нагревательных печей, регенеративных теплообменников, аппаратуры для вулканизации, производства стекла и др.) важное значение имеет расчет процесса нагрева или охлаждения тел для режима нестационарного теплообмена. [c.306]

    Заключая настоящее сообщение, необходимо отметить, что сложность задач по применению методов кибернетики в химии и химической технологии, биотехнологии и нефтепереработки, требует непрерывного повышения квалификации ученых как в части разработки самих информационно-компьютерных систем с учетом значительного расширения возможностей вычислительной техники, так и в понимании существа процессов на основе новых знаний, таких, как нестационарность гидродинамическая, массообменная, теплообменная, положений неравновесной термодинамики, принципов энерго- и ресурсосбережения. [c.29]


    Ниже мы будем рассматривать задачу определения теплофизических параметров на первой или третьей стадиях технологического режима производства смол в аппарате периодического действия, т. е. при нестационарном теплообмене и неизменном соста ве реакционной смеси. [c.280]

    Все перечисленные звенья взаимосвязаны. Параметры, характеризующие их состояние, имеют пространственную распределенность. Поэтому в общем случае математические модели лроцессов могут быть получены из нестационарных уравнений сохранения массы, энергии, количества движения и диффузии с начальными и граничными условиями, учитывающими взаимодействие звеньев и пограничных слоев их элементов [35]. Используя известные уравнения законов сохранения, запишем общую систему уравнений, характеризующих состояние движущейся в трехмерном пространстве среды, в которой идут массообменные и теплообменные процессы  [c.29]

    Считается, что некоторые или все из перечисленных в подразд. 7.4.1.3 факторов могут влиять на конвективный теплообмен. Можно ожидать, что при высокой концентрации частиц уменьшение толщины пограничного слоя и особенно контактный теплообмен со стенкой будут основными факторами. Однако поток взвеси по своей природе существенно нестационарный (значительно более нестационарный, чем однофазный поток [50]), поэтому любой из указанных трех факторов может преобладать в данный момент времени. [c.240]

    Аналогичные процессы возникают в электрической цепи, состоящей из омического сопротивления и емкости (см. параграф 3.2). Разгон и торможение какого-либо двигателя вследствие инерции ротора и зависимости крутящего момента от угловой скорости вала в ряде случаев протекают так же, как процессы в системе первого порядка. Нестационарный теплообмен между средами, разделенными стенкой вследствие ее теплоемкости, может служить еще одним примером переходного процесса в системе первого порядка. Таким образом, экспоненциальная переходная функция для систем первого порядка может быть вызвана разными причинами, но общим для этих совершенно разных систем является изменяющееся со временем накопление некоторой физической величины (объема жидкости, напряжения электрического тока, угловой скорости вала двигателя, температуры стенки и т. п.), определяющей состояние системы. [c.48]

    Нестационарный теплообмен характерен для периодов пуска, простоев, изменений технологических режимов работы аппаратов, его влияние на коррозионное разрушение редко поддается учету. [c.163]

    Значительное число исследований теплообмена в зернистом слое выполнено в нестационарном режиме нагревания (охлаждения) слоя. Выше подробно анализировались возможные погрешности этих методов исследования. В работах [106, 107] при проведении опытов в режиме прогрева слоя температуру газа на выходе измеряли только в одной точке на оси аппарата, что также могло привести к ошибкам в определении средних коэффициентов теплоотдачи. Однако основную роль в отклонении полученных зависимостей вниз при Кеэ < 100 (рис. IV. 19, в) играет продольная теплопроводность, не учтенная в методике обработки опытных данных. Пересчет данных [106] по формуле (IV. 67) при 1оАг = 15 для стальных шаров и Хо/Кг = 5 для песка привел к хорошему совпадению опытных точек с зависимостью (IV. 71). Аналогичная коррекция формул, полученных в [107], показана на рис. IV. 19, б. Таким образом, занижение данных по теплообмену в зернистом слое при Кеэ < 100 связано с влиянием продольной теплопроводности, неравномерности распределения скоростей и возможных погрешностей экспериментов, а не с особенностями закономерностей процессов переноса в переходной области течения газа [106]. [c.160]

    Изложены теоретические основы расчета колонных аппаратов. Рассмотрены стационарные и нестационарные режимы обтекания жидких, твердых и газообразных частиц потоком ньютоновской и неньютоновской жидкости, массо- и теплообмен в зтих системах с учетом химических реакций и поверхностных явлений на границе раздела фаз. Результаты теретических исследований сопоставлены с зкспериментальными данными и использованы для расчета конкретных промышленных аппаратов. [c.2]

    Рассматривается конвективный массо- и теплоперенос при малых и средних значениях Ке для случаев обтекания частиц. Циркуляционное движение жидкости внутри капель играет существенную роль при расчете массопередачи в случае лимитирующего сопротивления дисперсной фазы. Для такого режима наблюдается нестационарный характер процесса массопередачи, что при больших значениях Ре приводит к зависимости критерия Шервуда или Нуссельта от критерия Фурье. Внешний массо- и теплообмен при больших Ре стационарен и описывается уравнениями диффузионного пограничного слоя. При исследовании решений этих уравнений показано, что для расчета величины массового потока достаточно знать распределение вихря по поверхности твердой сферы или касательной составляющей эрости по поверхности капли и газового пузырька. Обсуждены гранр цы применимости погранслойных решений при увеличении отношения вязкостей дисперсной и сплошной фаз. Общий случай соизмеримых фaJ0выx сопротивлений описан обобщенной циркуляционной моделью. Закономерности массо-и теплопереноса при лимитирующих сопротивлениях сплошной и дисперсной фаз и общий случай соизмеримых фазовых сопротивлений рассмотрены в разделах 4.2—4.4.  [c.168]

    Рассмотренный вьпие нестационарный механизм переноса с развитой циркуляцией жидкости внутри капли удовлетворительно описывает массо- и теплообмен в каплях диаметром 0,5 - 3 мм. Для больших капель может наблюдаться интенсивное перемешивание жидкости внутри капли. В работе Хандлоса и Барона [259] дан вьшод уравнения диффузии для случая, когда движение жидкости в капле носит турбулентный характер. [c.191]

    Рассматривая нестационарный теплообмен непрерывной фазы (первоначальная температура Тв) при контакте с поверхностью (температура Т- у) ъ течение времени I, Миклей и Фэрбенкс получили выражение для мгновенного (в момент I) удельного теплового потока  [c.420]

    Динамические характеристики. Из-за внешних воздействий и (или) изменений внутренних свойств катализатора и реактора в целом температурные и концентрационные поля в слое катализатора меняются во времени. При этом, как было показано, те параметры, влияние которых в стационарном режиме можно было не учитывать, часто оказываются существенными в нестационарном процессе. К таким параметрам можно отнести, например, дисперсию вещества вдоль слоя катализатора, массоемкость и теплоемкость слоя, неравподоступность наружной поверхности зерна, внешний тепло- и массообмен. В стационарном режиме значительное число факторов воздействует на состояние системы независимо и часто аддитивно. Это позволяет использовать более узкие модели и эффективные параметры, отражающие суммарное влияние этих факторов. В нестационарном режиме степень влияния этих же факторов может быть иной и, кроме того, сильно зависеть от состояния системы. Р1х влияние необходимо учитывать порознь. Так, например, дисперсию тепла вдоль адиабатически работающего слоя катализатора в стационарном режиме вполне достаточно представить коэффициентом эффективной продольной теплопроводности. В нестационарном режиме это недопустимо — необходимо учитывать раздельно перенос тепла по скелету катализатора, теплообмен между реакционной смесью и наружной поверхностью зерна и иногда перенос тепла внутри пористого зерна. Из-за инерционных свойств в нестационарном режиме имеют место большие, чем в стационарном, градиенты температур и концентраций на зерне и в слое катализатора. Это приводит, иапример, к отсутствию пропорциональной зависимости между температурой и степенью превращения, непродолжительному, но большому перегреву у поверхности зерна с наилучшими условиями обмена, значительным перегревам слоя — динамическим забросам, на-Л1Н0Г0 превышающим стационарные перепады температур между входом и выходом из слоя могут быть в несколько раз больше адиабатического разогрева при полной степени превращения. Сдвиг по фазе между температурными и концентрационными полями иногда приводит к возникновению колебательных пере- [c.13]

    Крайне низкая кажущаяся теплопроводность порошка обусловлена тем, что в вакууме скорость теплопереноса описывается уравнение.м (8). Это явление хорошо известно как эффект Смолуховского (см. разд. 2.8, а также 2.1.8). При нормальном давлении для частиц диаметром примерно 1 мм скорость передачи тепла может контролироваться уравнением (8) в том случае, если теплообмен происходит в нестационарных условиях и время соприкосновения частиц достаточно мало (несколько секунд или меньше). Такая ситуация имеет место в псевдоожиженных слоях, где частицы соударяются с нагревающим или охлаждающим элементом, а также в других контактных теплообменных устройствах, таких как вращающиеся печи для обжи1 а и барабанные сушилки. [c.71]

    Как показано в разделе 4.1, в неподвижном слое катализатора, работающем с периодическим изменением направления подачи реакционной смеси, может установиться температурный режим, при котором разность Гтах Тщ мбжду макйимальной температурой в слое и начальной температурой свежей смеси намного превосходит величину адиабатического разогрева смеси при полной (или равновесной) степени превращения. Это происходит из-за того, что тепло реакции выделяется главным образом в зоне высоких температур, а периодические переключения направления движения газа как бы запирают эту зону внутри слоя. Предложенный нестационарный способ по сравнению с традиционными стационарными дает возможность создания оптимальных условий для осуществления обратимых экзотермических реакций в одном слое катализатора без сооружения промежуточных теплообменных устройств. Кроме того, этим способом можно перерабатывать слабокопцентрированные газы без их предварительного подогрева. [c.106]

    Основные результаты расчета при различных технологических параметрах представлены в табл. 10.1. В расчетах варьировались теплопроводность зерна катализатора, линейные размеры гранул катализатора, состав смеси на входе в аппарат, скорость фильтрации и время контакта. В таблице представлены средние за цикл концентрации аммиака на выходе из слоя и максимальная температура катализатора. Из данных, приведенных в таблице, можно сделать вывод о влиянии размеров зерна катализатора на технологические характеристики нестационарных режимов. С ростом размеров зерна катализатора уменьшается максимальная температура, что вызвано снижением коэффициента межфазного теплообмена и ростом характерного времени теплопереноса в пористом зерне. Сов-иместное действие этих двух факторов увеличивает ширину зоны реакции, и, как следствие, максимальная температура понижается. Выход аммиака увеличивается. Это еще раз подтверждает уже обсуждавшийся ранее вывод о том, что при осуществлении процесса в нестационарном режиме часто при увеличении размера зерна внутренний массоперенос оказывает меньшее влияние на выход продукта, чем межфазный теплообмен и теплоперенос внутри зерна катализатора. Например, по данным расчетов при увеличении диаметра зерен катализатора с 5 до 14 мм максимальная температура в слое уменьшается с 587 до 552°С. При этом средняй- за цикл выход аммиака увеличивается с 15,5 до 17,2%. Дальнейшего снижения максимальной температуры можно добиться за еявт использо- [c.213]

    Преимущества проведения нестационарных исследований заключается в следующем они, в отличие от стационарт>1х, позволяют определять локальные тепловые характеристики, используя небольшое количество достаточно удаленных друг от друга точек. Кроме того, при эксплуатации неизотермических трубопроводов теплообменные процессы существенно нестационарны, поэтому проведение нестационарных исследований не требует обязательного наличия данных активного экспернмента. [c.167]

    В 1.1.6 приведены названия различных типов теп-лообмепного оборудования, классифицированного в соответствии с его функциональным назначением. Описаны теплообменники без фазового перехода теплоносителя, бойлеры, конденсаторы и другие виды теплообменных аппаратов. Здесь же рассмотрены различные варианты работы теплообменников в нестационарных условиях. [c.7]

    Теплообмен неподвижного слоя зернистого материала (насадки) через ограничивающую этот слой стенку. Решение задачи о температурном поле, а также о количестве отданного или полученного теила при охлаждении или нагревании неподвижного слоя зернистого материала (насадкн) через ограничивающую этот слой стенку сводят к задаче охлаждения или нагревания твердого тела (имеющего форму аппарата, в котором размещен зернистый материал) в нестационарных условиях. [c.152]

    Нестационарный теплообмен имеет место также на установке по адс0рбци01П10Й очистке с периодически переключающимися адсорберами. [c.546]

    Проникновение импульса в пакет происходит по нестационарному закону, аналогичному внешнему теплообмену. Поток импульса, равный силе сопротивления на единицу площади соприкосновения / = Р/5, пульсирует с частотой % о и постоянным является лишь его среднее значение f. Отсюда следует пропорциональность силы со- ротиБления поверхности тела, т. е. квадрату диаметра шара, в соответствии с наблюденной зависимостью (ИГ44). Для объяснения остальных особенностей Зс В] симости и независимости величины Гг... ф от свойств Твердых частиц и псевдо-ожижаюи1его потока необходимо построить правильную модель процесса переноса импульса в кипящем слое и рассмотреть все вытекающие из этой модели следствия. [c.166]

    До некоторой степени аналогично и положение пакетной модели теплообмена кипящего слоя с погруженными в него поверхностями. Выявив основной фактор интенсификации внешнего теплообмена, — нестационарность соприкосновения плотной фазы (пакетов) с поверхностью — эта модель позволила определить те основные параметры, от которых зависит коэффициент теплоотдачи и наиболее удобные формы критериальных зависимостей, численные коэффициенты и показатели степени, в которых оказалось целесообразно подбирать эмпирически. И хотя эту схему в дальнейшем пришлось дополнять введением понятия контактного сопротивления теплообмену, а для крупных частиц учиты-284 [c.284]

    При стационарном режиме работы печей (температура уходящих газов не меняется) суммарная теплоотдача к нагреваемым изделиям зависит от теплогенерации (в электрических печах от подведенной мощности) и при 9к = onst не зависит от геометрии пространства, расположения нагревателей и физических свойств сред, участвующих в теплообмене. Расположение зон теплогенерации или нагревателей сказывается только на распределении теплоотдачи по пове рхности нагрева. Применительно к электрическим печам данное положение справедливо и для нестационарного режима, если пренебречь затратой тепла на разогрев кладки и нагревателей. Интен- [c.82]

    Расчет теплообменных аппаратов до недавнего времени сводился только к расчету Стационарных режимов и нахождению таких параметров, как средняя разность температур, коэффициенты теплопередачи, поверхность теплопередачи и гидравлические сопротивления. Однако при создании современных автоматизированных технологических систем необходимо иметь количественные зависимости в виде математических моделей, характеризующих как, стационарные, так и нестационарные ренгнмы работы теплообменных устройств. [c.230]


Смотреть страницы где упоминается термин Теплообмен нестационарный: [c.314]    [c.315]    [c.546]    [c.306]    [c.307]    [c.309]    [c.259]    [c.283]    [c.265]   
Основные процессы и аппараты химической технологии Кн.1 (1981) -- [ c.283 , c.284 , c.366 ]

Основные процессы и аппараты Изд10 (2004) -- [ c.306 ]

Гидродинамика, массо- и теплообмен в дисперсных системах (1977) -- [ c.63 ]

Тепловые основы вулканизации резиновых изделий (1972) -- [ c.138 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Ток нестационарный



© 2025 chem21.info Реклама на сайте