Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение атома. Ядра атомов

    Строение атома водорода. Атом водорода имеет наиболее простое строение в нем есть только один электрон, движущийся в поле ядра. Для такой системы функция потенциальной энергии, [c.20]

    Квантовомеханическое объяснение строения атома водорода. Атом водорода устроен наиболее просто — он имеет только один электрон, движущийся в поле ядра. В этом случае входящая в уравнение Шредингера функция потенциальной энергии и принимает вид (см. стр. 19) [c.37]


    Атомом называют мельчайшую частицу элемента, сохраняющую все его свойства, С точки зрения теории строения атомом является устойчивая динамическая система из положительно заряженного ядра и определенного числа электронов. Если число электронов равно числу единиц заряда ядра, атом яв.тяется электронейтральной системой, к которой и относится химическое определение атома, в противном же случае мы имеем дело с положительным или отрицательным ионом. В теории строения такие системы описывают теми же методами, что и электронейтральные атомы, поэтому второе определение обобщает понятие атома и на ионы. Говоря об устойчивости атома, понимают, что энергия атома ниже, чем энергия невзаимодействующих ядра и электронов, т. е. при образовании атома из ядра и электронов энергия выделяется. Обычно за начало отсчета энергии, т, е. за нуль, принимается энергия невзаимодействующих ядра и электронов. Тогда энергия устойчивой системы — атоМа — оказывается отрицательной. [c.16]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Как известно, атом имеет сложное строение. Он состоит из тяжелого центрального ядра, обладающего положительным электрическим зарядом, и вращающихся вокруг него на сравнительно далеком расстоянии электронов — значительно более легких частиц с отрицательным электрическим зарядом. Электроны в атоме удерживаются электрическими силами, действующими между положительно заряженным ядром и отрицательно заряженными электронами. [c.90]


    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Таким образом, общие и специфические свойства определяются схожестью электронного строения атомов ( в свободном или связанном состоянии), проявляемой в близости радиусов, величин электроотрицательности атомов, в изоморфизме соединений, равенстве и однотипности валентных возможностей атомов и т. д. Индивидуальные свойства — это свойства, присущие только данному атому это результат проявления всех особенностей его электронной структуры, его заряда ядра и всех вытекающих особенностей (энергии, геометрии атомных орбиталей). Электронная структура атома в свободном состоянии индивидуальна, неповторима. Атом занимает определенное место в непрерывном ряду элементов и обладает физической индивидуальностью спектром, атомной массой, набором изотопов и т. д. и т. п. [c.48]

    После открытия электрона и протона эта модель была рассмотрена физиками, занимавшимися вопросами строения атомов, и стало очевидным, что прежнюю теорию движения частиц (законы Ньютона), а также теорию электричества и магнетизма нельзя применить к атому. Согласно электромагнитной теории, при вращении электрона вокруг ядра должен возникать свет, частота которого должна быть равной частоте вращения электрона в атоме. Такое испускание света движущимся электроном подобно испусканию радиоволн при прямом я обратном движении электронов в передающей радиоантенне. Однако по мере продолжения непрерывного испускания атомом энергии в виде света электрон должен был бы двигаться по спирали, все больше и больше приближаясь к ядру, и частота его движения вокруг ядра должна была бы все возрастать. В соответствии с этим по старым (классическим) теориям движения и электромагнетизма атомы водорода должны были бы давать спектр всех частот непрерывный спектр). Но это противоречит экспериментальным данным спектр водорода, получаемый в разрядной трубке, содержащей атомы водорода (образующиеся в результате диссоциации молекул водорода), состоит из дискретных линий, как показано на рис. 5.7. Кроме того, известно, что объем, который занимает атом водорода в твердом или жидком веществе, соответствует диаметру атома, равному примерно 200 пм, между тем прежние теории атома водорода не объясняли, каким образом электрон удерживается на определенном расстоянии, а не перемещается все ближе и ближе к ядру, и диаметр атома не становится значительно меньше 200 пм. [c.120]

    Орбиталей) в форме линейных комбинаций атомных орбиталей, которые выбраны на ядре лишь одного атома дело в том, что, как оказалось, для симметричных молекул, таких, как СН4, одноцентровые методы приводят к очень хорошим результатам при вычислении физических величин [22]. В таких случаях анализ заселенностей должен был привести к отнесению всего электронного заряда молекулы к одному атому, ядро которого выбрано в качестве начала отсчета при разложении волновых функций. Однако анализ заселенностей приводит к физически правильным результатам, если базис атомных орбиталей выбран в соответствии с электронным строением атомов, образующих рассматриваемую молекулу. [c.310]

    Пиридиновое кольцо имеет плоское строение. Атом азота пиридина связан с двумя соседними атомами углерода гибридизованными связями аналогично атомам углерода в бензоле. Межатомные расстояния С—С в пиридине равны между собой и практически равны с расстояниями С—С в бензольном ядре расстояния С—N значительно меньше тех же расстояний в несопряженных молекулах. [c.587]

    Строение и состав реагирующих веществ могут различно влиять на скорость электронного перехода. Очень важным фактором, определяющим скорость электронного перехода, является электропроводность групп атомов (например, HgO, NHg, СГ, N"" и т. д.), окружающих центральный атом. Группы, не про- водящие ток (т. е. такие, которые мешают удалению электронов центрального атома от ядра), препятствуют переходу электронов. Проводящие группы могут способствовать переходу электронов, увеличивая размеры реагирующих частиц и уменьшая кулоновские силы взаимодействия между ними. [c.27]

    Строение ядер. Нейтральный атом состоит из плотного ядра диаметром около см, окруженного диффузным облаком электронов. Внешний диаметр этого облака равен примерно 10 см. Почти вся масса атома сосредоточена в положительно заряженном ядре. Величина заряда ядра равна целому числу зарядов электрона или 4,80223-Z эл. ст. ед. Это целое число 2 называется атомным номером. Оно совпадает с порядковым номером элемента в периодической системе элементов. Ядро состоит из 2 протонов и N нейтронов. [c.24]


    Каждый последующий элемент периодической таблицы имеет (как правило) то же строение атома, что и предыдущий, но к атому добавляется еще один электрон, который 1) либо входит в состав внешнего слоя, 2) либо начинает собой новый слой, 3) либо входит в состав одного из ранее образовавшихся внутренних слоев. Первый, ближайший к ядру атома, электронный слой не может вместить в себя более двух электронов поэтому он становится завершенным уже у элемента с порядковым номером 2 — гелия. Начи- [c.78]

    Усложнение атомов элементов есть результат развития, а не механического роста. Эту сушность периодического закона подтвердила и углубила современная теория строения атома. Усложнить атом элемента с точки зрения теории строения атома — значит ввести в ядро протон, а в электронную оболочку электрон. В результате такого количественного изменения появляется новый элемент с новыми свойствами. Такое развитие и наблюдается по периодам от элемента к элементу. [c.48]

    Современная теория строения атома, основанная на квантовой (волновой) механике, представляет поведение электрона в атоме очень сложным. Электрон — частица определенной массы, движущаяся с большой скоростью. Вместе с тем электрон обладает и свойствами волны он движется по всему атомному объему и может находиться в любой части пространства вокруг ядра атом  [c.47]

    Атомы. Последним известным в настоящее время пределом делимости вещества являются элементарные частицы — протоны, нейтроны и др. За последние десятилетия благодаря появлению мощных ускорителей и тщательному исследованию состава космических лучей стало известно около 200 элементарных частиц. Теперь ставится вопрос об их (строении в связи с этим вместо термина элементарные частицы иногда пользуются выражением фундаментальные частицы . Атомами называются наиболее простые электрически нейтральные системы, состоящие из элементарных частиц. Более сложные системы — молекулы— состоят из нескольких атомов. Химикам приходится иметь дело с атомами, образующим вещества, — атомами химических элементов они представляют наименьшие частицы химических элементов, являющиеся носителями их химических свойств. Атом химического элемента состоит з положительного ядра, содержащего протоны и нейтроны, и движущихся вокруг ядра электронов . Многие из этих атомов устойчивы, они могут существовать сколь угодно долго. Известно также больщое число радиоактивных атомов, которые спустя некоторое время превращаются в другие атомы в результате изменений, происходящих в ядре. [c.5]

    Атомы имеют сложное строение. Атом состоит из положительно заряженного ядра, находящегося в центре атома, и оболочки, состоящей из отрицательно заряженных частиц — электронов. [c.30]

    Самое существенное свойство оболочки атома определяется тем, что атом состоит из частиц, несущих противоположные электрические заряды из положительно заряженного ядра (описание тонкого строения которого выходит за пределы вопросов, рассматриваемых в настоящей книге) и отрицательно заряженных электронов, число которых может достигать ста. В незаряженном атоме электроны компенсируют заряд ядра если число электронов меньше или больше числа зарядов ядра, то имеется заряженный атом, или атом-ион. [c.9]

    М. И. К о р с у н с к и й. Оптика. Строение ато.ма. Атомное ядро. Физматгиз, 1962. [c.253]

    Изотопы. Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории строения атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные (отклонения от целых чисел можно объяснить недостаточной точностью измерений. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объясннгь нелочностью измерении и другими случайными причинами. Например, атомная масса хлора равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть — 37. Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих ра и ые массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами, Ф. Астону удалось разделить такие смеси на составные части, которые были названы изотопами от греческих слов изос и топос , что означает одинаковый и место (здесь имеется в виду, что разные изогоны одного элемента занимают одно место в периодической системе), С точки зрения протонно-нейтронной теории изотопами являются разновидности элементов, ядра атом.ов которых содержат различн-je число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, ко- [c.22]

    Атом серы может совсем изменить направление течения реакции. Так, при хлорировании дибензтиофена при низкой температуре хлор не замещает атомов водорода в ядре, а присоединяется к атому серы. Атом серы легко окисляется до сульфоксида или сульфона. Сульфо-ксидная и сульфоновая группы оказывают направляющее влияние при вхождении замещающих групп, ориентируя их в положение 3 в бензтиофеновом ядре и в положения 3, 6 в дибензтиофеновом ядре. Сульфоны и сульфоксиды гомологов дибензтиофена приобрели за последнее время большое научное значение при доказательстве строения соединений этого класса. При действии на сульфоновые соединения щелочи отщепляется группа 30г, раскрывается тиофеновое кольцо и дибензтиофен переходит в соответствующий гомолог дифенила  [c.352]

    Вспомним, что связь образуется за счет перекрывания орбита-лей при сближении атомов. Поскольку для гибридных орбиталей электронная плотность сосредоточена в одном направлении (в отличие от симметричного относительно ядра распределения электронной плотности 5-, р- и -орбиталей), в этом случае обеспечивается более эффективное перекрывание атомных орбиталей, и именно система гибридных орбиталей должна использоваться для образования связей. В соответствии с этим (см. рис. 16) атом Mg, имеющий гибридные 5р-орбитали, дает молекулы линейного строения атом В — плоские молекулы (например, ВРз) с тремя связями, на-правленнрлми под углом 120° друг к другу атом С — молекулы, в которых оп находится в центре тетраэдра, образуемого четырьмя связанными с ним атомами. В молекуле РСЬ атом Р находится в центре трехгранной бипирамиды, образуемой пятью атомами хлора, а в 5Р б атом 5 находится в центре октаэдра с шестью атомами Р в его вершинах. [c.77]

    С развитием электронной теории строения атомов стало ясно, что химические свойства элементов являются функцией электронной стрз ктуры атомов. Отсюда следует, что в качестве объективного критерия, однозначно определяющего положение элемента в Периодической системе, целесообразно выбрать именно электронное строение атома. Поэтому в развитии Периодического закона выделяют три этапа. На первом этапе в качестве аргумента, определяющего свойства элементов, была выбрана атомная масса и закон был сформулирован Д.И.Менделеевым следующим образом "Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от их атомного веса". На втором этапе было выяснено значение атомного номера, который, как оказалось, определяет заряд ядра атома. Открытие изотопов и изобаров показало, что истинным аргументом, определяющим природу элемента, является именно заряд ядра, а не атомная масса. Действительно, атомы с одинаковой атомной массой — изобары (например, Ат, °К, — принадлежат разным элементам, в то вре- [c.226]

    Однако иа протяжении последующих более 40 лет П.с. в значит, степени представляла собой лишь эмпирич. обобщение фактов, поскольку отсутствовало фиэ. объяснение причин периодич. изменения св-в элементов в зависимости от возрастания их атомной массы. Такое объяспение было невозможно без обоснованных представлений о строении атома (см. Атом). Поэтому важнейшей вехой в развитии П.с. стала планетарная (ядерная) модель атома, предложенная Э. Резерфордом (1911). В 1913 А. ван ден Брук пришел к выводу, что порядковый номер элемента в П.с. численно равен положит, заряду (2) ядра его атома. Этот вывод был экспериментально подтвержден Г. Мозли (закон Мозли, 1913-14). В результате периодич. закон получил строгую физ. формулировку, удалось однозначно определить ниж. границу П.с. (И как элемент с миним. 2=1), оценить точное число элементов между И и и и установить, какие [c.482]

    Положение углерода и кремния в периодической системе и строение их атомов. Углерод и кремний находятся п главной подгруппе IV группы пер 1однческон сргстемы. Углерод — во втором, а кремний — в третьем периодах. Порядковый номер (заряд ядра ато да) углерода 6, кре-лгшя 14. [c.131]

    Прочность связи галоида в галоидированных ароматических углеводородах сильно зависит от их строения. Атом галоида, связанный с атомом углерода бензольного ядра, не отщепляется ни щелочью (водной или спиртовой), ни спиртовым раствором азотнокислого серебра. Столь малая реакционная способность галоида сближает галоидопроизводные этого типа (например, хлорбензол) с соединениями жирного ряда, содержащими галоид у атома углерода, связанного с другим атомом углерода двойной связью, например с хлористым винилом СНз=СНС1. Наоборот, у ароматических галоидопроизводных с галоидом в боковой цепи галоид отщепляется (например, при гидролизе) еще легче, чем у большинства насыщенных галоидопроизводных жирного ряда. В некоторых других реакциях (например, с магнием в эфирной среде, с металлическим натрием) атом галоида, находящийся при атоме углерода ядра, оказывается достаточно подвижным. [c.220]

    Непреодолимые трудно Сти встречаются при попытках распределить двойные связи в молекуле антрацена, если пользоваться формулой Кекуле для строения бензольного ядра. Ни один из вариантов I и II (рис. 302) не может быть согласован с существованием у молекулы антрацена центра симметрии (III), на который определенно указывают рентгеноструктурные исследования Синклера, Робертсона и Матьисона. Однако те же данные хорошо оогласуются со структурной формулой IV, построенной из ато М-ов углерода типа Б. Расстояния между атомами, [c.338]

    Как уже указывалось на стр. 138, атом кислорода в молекуле воды находится в состоянии 5рЗ-гнбрндпзацпи. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5 ). Электроны, образующие связи О—Н, сыеш.ены к более электроотрица- тельному атому кислорода, в результате чего атоА ы водорода приобретают эффективные положительные заряды (рис. 71). Неподеленные электронные пары, находящиеся на гибридных зр -орбиталях, смещены относительно ядра атома кислорода и создают два отрицательных полюса. Схсма строения Молекулярная масса парооб- ВОДЫ, разной воды равна 18 и отвечает [c.207]

    Вскоре после открытия нейтрона советские ученые Д. Д. Иваненко и Е. Н. Гапон создали протонно-нейтронную теорию строения ядра (1932). Согласно этой reopirn ядра всех атомов, кро.ме ядра ато.ма водорода, состоят из Z протонов и (Л — Z) нейтронов, где Z — порядковый номер эле. 1ента, А - массовое число. [c.30]

    Ц Согласно такому строению, каждый водородный атом хинолина занимает особое положение, и число изомерных однозамешенных производных равно семи. Положения заместителей обозначаются или цифрами, или буквами а-, р-, - в пиридиновом ядре о-, м-, п- и а- ( ана )—в бензольном ядре. Подобно пиридину хинолин обнаруживает свойства основания и с кислотами образует соли. [c.611]

    На первый вопрос слёдует ответить утвердительно. Да, электроны существуют термин электрон ученые применяют при рассмотрении целого ряда явлений, таких, как пучок лучей в электрической разрядной трубке, изучавшийся Дж. Дж. Томсоном электроном называли носитель единичного электрического заряда на капельках масла в приборах Милликена электрон — это то, что присоединяется к нейтральному атому фтора и обусловливает превращение его в ион. Что касается второго 1вопроса — как выглядит электрон, то в этом отношении можно сказать, что некоторая информация была получена при изучении рассеяния протонами и другими атомными ядрами электронов, обладающих очень высокими скоростями. Такого рода эксперименты позволили получить очень ценные сведения о размерах и строении ядер (см. гл. 26) эти опыты показали также, что электрон ведет себя как точечная частица, размер которой не превышает в диаметре 0,1 фм (0,1 -10 м). [c.80]

    Датский физик Нильс Бор, ставший вскоре ведущим теоретиком в области атомного учения, подхватил мысли английского коллеги и в 1913 году в нескольких работах Оп the onstitution of Atomes and Mole ules высказал свои представления о новой модели атома. Атом состоит из положительно заряженного ядра, сосредоточившего в себе всю массу ядро окружено электронами, число которых компенсирует заряд ядра и которым предписаны вполне определенные орбиты. Теперь представление об атоме становилось четким. Конечно, должно было пройти некоторое время, прежде чем появились конкретные данные о строении атомного ядра. Однако уже сейчас можно было сделать ценные выводы. Источником радиоактивного излучения и местонахождением таинственной энергии атома могло быть только ядро. Напротив, за поглощение и излучение световых и рентгеновских лучей, а также за реакционную способность атомов ответственны электронные оболочки, находящиеся вокруг этого ядра. Ученые получили теперь отчетливые представления и о размерах атома измерив диаметр атома, его оценили в 10 см, то есть стомиллионной частью сантиметра. Неизмеримо крошечным было ядро, которое оказалось в десять тысяч раз меньше, чем весь атом. [c.79]

    При приближении электрона к атому возникает взаимодействие создаваемого падающим электроном электрического поля с одним из электронов, принадлежащих атому. Глубина проникновения падающего электрона в электронную оболочку атома или молекулы зависит от его энергии и направления, а также от свойств электронной оболочки атома. Падающий электрон отклоняется от своего направления вследствие отталкивания атомными электронами. Чем больше скорость падающего электрона и чем меньше содержится электронов в атоме, тем меньше падающий электрон будет отклоняться от своего первоначального направления. В результате воздействия падающего электрона атомные электроны смещаются относительно ядра, т. е. происходит поляризация атома. Величина смещения атомных электронов зависит от силы связи их в атоме, которая определяется зарядом ядра и строением электронной оболочки. Поляризуемость атома растет с увеличением атомного номера. Чем больше поляризуемость, тем легче происходит смещение электронов атома при взаимодействии с падающим электроном. При достаточно большом взаимодействии смещение одного из электронов достигает критической величины и он покидает атом, т. е. происходит процесс ионизации. При эт падающий элек- [c.30]

    UHTepe HO сравнить орбиты первых десяти электронов в молекуле, характеризующейся небольшими расстояниями между ядралш и близкой по строению к объединенному атому, с орбитами десяти электронов молекулы, ядра атомов которой находятся далеко друг от друга, когда электронная конфигурация [c.310]


Смотреть страницы где упоминается термин Строение атома. Ядра атомов: [c.262]    [c.56]    [c.136]    [c.352]    [c.161]    [c.173]    [c.43]    [c.34]    [c.38]    [c.57]   
Смотреть главы в:

Руководство по химии поступающим в вузы 1991 -> Строение атома. Ядра атомов




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Ядра атомов

Ядро атома, строение



© 2025 chem21.info Реклама на сайте