Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гравиметрическое определение хрома

    При гравиметрическом определении суммы ш елочных металлов в минералах и рудах микрохимическим методом навеску разлагают фтористоводородной кислотой для удаления кремневой кислоты [19]. Остаток фторидов нагревают с щавелевой кислотой, которая при высокой температуре вытесняет фтор. Образовавшиеся оксалаты металлов прокаливают при 800° С. При этом большинство металлов образует оксиды, а щелочноземельные элементы, магний и щелочные металлы — карбонаты. При обработке прокаленного остатка горячей водой в раствор переходят карбонаты щелочных металлов, гидроксид магния и небольшое количество карбонатов щелочноземельных элементов. Если образец содержит большие количества алюминия, железа и хрома, последние при прокаливании могут образовать алюминаты, ферраты и хромиты. Для их разложения раствор с осадком нагревают на водяной бане и после охлаждения обрабатывают насыщенным раствором карбоната аммония. Небольшое количество катионов, главным образом магния, оставшихся в растворе, осаждают 8-оксихинолином. Осадок отфильтровывают, раствор упаривают досуха и остаток прокаливают. Полученные карбонаты щелочных металлов переводят в сульфаты, которые взвешивают. Умножая на фактор пересчета, находят сумму оксидов лития, натрия, калия, рубидия и цезия. [c.57]


    Соединение кобальта, образующееся при pH 4—9 и экстрагированное в неводный растворитель, стабильно по отношению к достаточно концентрированным сильным кислотам или щелочам, а соединения железа, меди, хрома и других металлов неустойчивы и при соответствующей обработке переходят в водный раствор. Осаждение железа можно предотвратить прибавлением лимонной кислоты прн pH выше 4. Если предполагается отделять кобальт 1-нитрозо-2-нафтолом перед его гравиметрическим определением, при анализе материалов, содержащих много железа, то последнее лучше предварительно отделить. [c.74]

    Предложено много методик для отделения родия от иридия и их последующего гравиметрического определения. Эти методы основаны на восстановлении родия до двухвалентного состояния и осаждении его органическим осадителем. В качестве восстановителей применяют хлорид хрома (И), хлорид титана (П1) или хлорид ванадия(II) и, кроме того, различные органические серу-содержащие соединения, [c.26]

    Альварес [162] использовала для определения оранжевый толуольный экстракт комплекса палладия с 1-нитрозо-2-нафто-лом. Интенсивность окраски при экстракции комплекса из нейтральных или слабокислых растворов выше, чем при экстракции из сильнокислых или щелочных растворов. Комплекс палладия с реагентом устойчив в 1,5 н. кислоте, но разрушается в сильнокислых и щелочных растворах. Избыток реагента тоже переходит в слой толуола, однако его можно удалить, не разрушив комплекса палладия, если к окрашенному раствору добавить едкий натр. Окраска толуольного экстракта довольно устойчива, ио при стоянии она бледнеет, особенно если экстракцию проводят из сильнокислых растворов. Максимум светопоглощения измеряют при 420 ммк. Закон Бера выполняется. Данных относительно влияния других платиновых металлов не приведено, однако, зная поведение их при гравиметрическом определении палладия этим реагентом, можно предположить, что метод в достаточной степени избирателен. Предложен способ устранения влияния меди и хрома. Никель почти не мешает, а кобальт и железо мешают определению. Однако железо можно замаскировать фторидом натрия. [c.225]

    Анализ хроморганических соединений мало изучен. Опубликованы лишь рекомендации по анализу некоторых хроморганических соединений в рамках классического микроанализа [241], экспресс-гравиметрическое микроопределение хрома в виде оксида хрома(III) одновременно с углеродом и водородом [155], методы кулонометрического микро- и ультрамикроопределения хрома [389] и спектрофотометрического определения хрома [173, 390]. [c.198]


    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]

    Солями гидразина восстанавливают хром (VI) до хрома (III). Последний осаждают в виде гидроксида и определяют гравиметрическим методом [166]. Качественная (капельная) реакция на Мо (VI) проведена с помощью индикаторной смеси сульфата гидразония и роданида калия [220]. Более совершенный метод количественного определения Мо (VI) описан в работе [221]. [c.178]

    Химические методы определения основаны на химических реакциях. В основе этих методов лежит взаимодействие вещества с веществом или три типа реакций кислотно-основные, окислительновосстановительные, комплексообразования. Сюда попадают следующие методы количественного анализа гравиметрические, титриметрические, классические методы газового анализа, хрома- [c.29]

    При гравиметрическом определении хрома в хромовых рудах в виде 8-оксихинолината или 8-оксихинальдината 0,5 г пробы сплавляют со смесью Na20a и NaOH в Ni-тигле, плав выщелачивают водой [996]. Анализ хромита на содержание хрома обычно проводят титриметрическими методами [12, 29, 357, 821, 1008J. [c.163]

    К удалению избытка промывной воды. При температуре чуть выше 92 °С масса осадка достигает постоянной величины и не меняется до температуры примерно 812 °С. Начиная с этой точки и до 945 °С выделяется кислород. Тщательный анализ потери массы показывает, что процесс разложения можно описать уравнением Ag2 г04- -02+Ag+Ag r02. Остаток, таким образом, представляет собой смесь металлического серебра и хромита серебра. Из полученных данных следует, что осадок хромата серебра, используемый для гравиметрического определения хрома, молено высушивать в интервале температур примерно от 100 до 800 °С, причем вполне подходящей для этого является температура ПО °С (в методиках из старых учебников указывается температура точно 135 °С). [c.486]

    Вычислить навеску технического стеарата хрома с массовой долей хрома 10% для его гравиметрического определения в виде ВаСг04, чтобы масса осадка при анализе была 0,3 г. [c.53]

    Определение r(VI). Для гравиметрического определения Gr(VI) используют хроматы бария (ПР = 1,6-10 при 18° С), свинца (ПР = 1,8-10 при 20° С), серебра (ПР = 2-10" при 25° С), ртути(1) (ПР=2-10" при 25° С). Определению хрома в виде хромата ртути(1) мешают многие ионы [132]. Осаждение Ag2 r04 возможно в присутствии двукратных количеств магния и равных количеств Мп(П), Fe(IH), Си(П), Ti(IV), Zr, Ni, Со и больших количеств SO4 . Ионы AsO , W0 , VO3, С1 мешают определению [1100]. [c.31]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Одной из классических гравиметрических методик является осаждение гидроксидов алюминия, хрома или железа при добавлении водного раствора аммиака к растворам, содержащим один из этих элементов. В результате реакции образуется, однако, объемистый и студенистый осадок, чем объясняются М1ногочислен1ные трудно сти при фильтровании и промывании, а также возможность соосаждения других катионов и анионов. Эти трудности можно преодолеть, если использовать метод гомогенного осаждения. Так, pH раствора иона алюминия подбирают таким образом, чтобы при этом не выпадал гидроксид алюминия, затем добавляют необходимое количество карбамида, и раствор нагревают до тех пор, пока гидролиз карбамида не увеличит pH настолько, что гидроксид алюминия осадится количественно. Полученный таким путем осадок имеет лучшие физические характеристики— высокую плотность и кристалличность. ПО Сле прокаливания гидроксид алюминия превращается в о(ксид алюминия А1гОз — превосходную весовую форму для гравиметрического определения алюминия. [c.231]


    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Другим важным экстрагентом является бензоин а-оксим, который осаждает вольфрам (VI) и молибден (VI). Образующиеся комплексы экстрагируют хлороформом [13,14]. Для полного выделения вольфрама экстракцию проводят несколько раз. Ванадий и хром также экстрагируются, но их можно замаскировать. Как и молибден, вольфрам экстрагируется из кислых растворов в присутствии восстановителей и роданида, но хуже, чем молибден. Этот метод используют для отделения вольфрама, предшествующего его гравиметрическому определению с помощью тетрафениларсоний-хлорида [15]. Вместо обычного восстановителя — хлорида олова (II)— применена ртуть, а комплекс экстрагируют раствором трибензиламина в хлороформе. Вольфрам реэкстрагируют слабощелочным раствором, содержащим пероксид водорода, для разрушения избытка роданида и окисления вольфрама до Ш . Метод позволяет отделять менее 50 мг вольфрама, но не рассчитан на отделение микросодержаний вольфрама. [c.235]

    Осадки аналогичного состава дают также катионы ртути, меди,. кадмия, никеля, цинка, марганца, хрома, свинца, серебра и железа, поэтому все эти ионы необходимо удалить. Образование осадка [ o( 5H5N)4] r207 было использовано (1182] для разработки гравиметрического метода определения кобальта (также никеля и кадмия). Осадок отфильтровывают через стеклянный фильтр и промывают раствором, содержащим немного бихромата калия и пиридина, а затем этанолом и абсолютным эфиром, после чего высушивают 15 мин. в вакуум-эксикаторе и взвешивают. Фактор пересчета на кобальт — 0,09968. [c.97]

    Например, хром определяют гравиметрически в виде оксида СггОз (молярная масса 152) и в виде хромата ВаСг04 (молярная масса 253,3 г/моль). Потеря 1 мг осадка СгзОз дает при пересчете на хром ошибку в 0,7 мг, а потеря 1 мг осадка ВаСг04 вызывает при вычислении количества хрома ошибку только в 0,2 мг. Следовательно, одинаковая по абсолютной величине погрешность определения дает меньшую ошибку в случае гравиметрической формы с большей моляр ЮР1 массой. [c.193]

    Во-вторых, реакция осаждения должна проходить количественно в соответствии с уже хорошо известной. стехиометрией. Это требование налагает самые большие ограничения на широкое применение реакций осаждения в химическом анализе. Этому требованию удовлетворяют всего лишь несколько осадков, например осадок хлорида серебра, осажденный в строго определенных условиях. В этом случае реакция превосходно, подчиняется стехиометрии. Многие катионы. металлов, включая ЩИ НК, никель, кобальт, марганец, алюминий, железо, хром, свинец, медь, В.ИСМУТ и кадмий, образуют нерастворимые гидроксиды. Можно было бы ожидать, что эти элементы можно определять посредством осадительного титрования стандартным раствором гидроксида натрия. Но, к сожалению, осаждение гидроксидов этих металлов происходит не строго в соответствии со стехиометрией. Гидроксиды металлов адсорбируют гидроксид-ионы и посторонние катионы, а количество адсорбируемых веществ колеблется в очень широких пределах, зав и сит от температуры, а также от концентрации и состава раствора. В гравиметрическом анализе загрязненный осадок мо жно растворить и переосадить при условиях, способствующих образованию чистого соединения, в титриметрии этого сделать невозможно. [c.251]

    В колбу емкостью 250 мл помещают 25—100 мл (в зависимости от содержания сульфат-ионов) анализируемой сточной воды, разбавляют дистиллированной водой до 100 мл, приливают 20 мл разбавленной (1 1) хлористоводородной кислоты, 20 мл глицерина или этилового спирта и нагревают при температуре, близкой к температуре кипения, до перехода окраски из желтой в зеленую бихромат-ионы восстанавливаются до ионов хрома(П1). (Если восстановление проводили спиртом, то кипятят до исчезновения запаха уксусного альдегида.) Затем прибавляют ЭДТА в количестве, в 10 раз превышающем содержание хрома, 10 мл горячего 5%-ного раствора хлорида бария и дают постоять 2 ч на кипящей водяной бане. Осадок сульфата бария отфильтровывают, промывают горячей водой и заканчивают определение гравиметрическим (стр. 83) или титриметрическим методом (стр. 81 [c.85]

    Все методы анализа основаны на использовании зависимости физико-химического свойства вещества, называемого аналитическим сигналом или просто сигналом, от природы вещества и его содержания в анализируемой пробе. В классических методах химического анализа в качестве такого свойства используются или масса осадка (гравиметрический метод), или объем реактива, израсходованный на реакцию (титриметрический анализ). Однако химические методы анализа не в состоянии были удовлетворить многообразные запросы практики, особенно возросшие как результат научно-технического прогресса и развития новых отраслей науки, техники и народного хозяйства в целом. Наряду с черной и цветной металлургией, машиностроением, энергетикой, химической промышленностью и другими традиционными отраслями большое значение для промышленноэнергетического потенциала страны стали иметь освоение атомной энергии в мирных целях, развитие ракетостроения и освоение космоса, прогресс полупроводниковой промышленности, электроники и ЭВМ, широкое применение чистых и сверхчистых веществ в технике. Развитие этих и других отраслей поставило перед аналитической химией задачу снизить предел обнаружения до 10 . .. 10 °%. Только при содержании так называемых запрещенных примесей не выше 10 % жаропрочные сплавы сохраняют свои свойства. Примерно такое же содержание примеси гафния допускается в цирконии при использовании его в качестве конструкционного материала ядерной техники. (Вначале цирконий был ошибочно забракован как конструкционный материал этой отрасли именно из-за загрязнения гафнием). Еще меньшее содержание загрязнений (до 10 %) допускается в материалах полупроводниковой промышленности (кремнии, германии и др.). Существенно изменяются свойства металлов, содержание примесей в которых находится на уровне 10 % и меньше. Например, хром и бериллий становятся ковкими и тягучими, вольфрам и цирконий становятся пластичными, а не хрупкими. Определение столь малых содержаний гравиметрическим или титриметрическим методом практически невозможно, и только применение физико-химических методов анализа, обладающих гораздо более низким пределом обнаружения, позволяет решать аналитические задачи такого рода. [c.4]


Смотреть страницы где упоминается термин Гравиметрическое определение хрома: [c.31]    [c.30]    [c.174]    [c.174]    [c.486]    [c.7]    [c.149]    [c.295]   
Аналитическая химия хрома (1979) -- [ c.30 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Определение гравиметрически



© 2025 chem21.info Реклама на сайте