Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод на капиллярную колонку

    Сущность хроматографии, ес физико-химические основы, история ее возникновения и развития, значение для науки и техники. Разновидности хроматографии. Виды хроматографии. Жидкостная и газовая хроматография, их отличительные особенности и области применения. Газовая хроматография как один из наиболее эффективных и -перспективных методов анализа и препаративного разделения сложных смесей. Варианты газовой хроматографии. Основные задачи газовой хроматографии. Предварительные сведения об аппаратуре, методике и примеры применения газовой хроматографии. Широкие и капиллярные колонки, заполненные и открытые. [c.296]


    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]

    Исследованию полиароматических углеводородов в нефтях и рассеянном органическом веществе уделяется в настоящее время усиленное внимание, особенно в связи с проблемой охраны окружающей среды. Лучшим методом анализа этих углеводородов является ГЖХ с использованием высокоэффективных капиллярных колонок. Примеры таких анализов приведены в работах [47, 49—52]. [c.175]

    Масс-спектрометрия в газовой хроматографии. Применение масс-спектрометрии для анализа газохроматографических фракций позволяет проводить качественный анализ компонентов разделенной в колонке смеси непрерывно, без выделения выходящ их из колонки веществ. Второе существенное преимущество метода состоит в том, что для масс-спектрометрии вполне достаточны даже те количества вещества, которые получают при анализе на капиллярной колонке. Таким образом, масс-спектрометр может выполнять функцию детектора. Такой метод сочетания хроматографического анализа с масс-спектрометрическим получил название хромато-масс-спектрометрии. [c.195]

    Если имеется тенденция к сокращению времени анализа (введение метода капиллярных колонок хорошо иллюстрирует данную тенденцию), эти замечания справедливы. Нужно подчеркнуть, что если при медленных анализах интегрирование [c.154]

    Относительно простой состав метилзамещенных алканов в нефтях группы позволил провести качественное и количественное определения углеводородов этого типа и в более высококинящих фракциях. В работе [13] сообщалось об определении этих углеводородов методом ГЖХ с использованием высокоэффективных капиллярных колонок. Метилзамещенные алканы большой молекулярной массы определялись методом молекулярной масс-спектрометрии [14]. Ти- [c.49]

    Разработан метод определения состава поглотительной фракции на капиллярной колонке [84]. Показано, что при анализе на одной колонке относительная ощибка составляет 4,6 1,7% из-за трудностей воспроизведения условий подготовки капиллярных колонок результаты анализа тех же систем на пяти разных колонках имеют относительную ощибку 13,7 8,6%. Это подчеркивает важность унификации методов подготовки колонок и сорбентов, а также целесообразность централизации выпуска стандартных капиллярных и набивочных колонок. [c.138]


    Итак, капиллярная хроматография не имеет конкурентов при анализе весьма малых количеств вещества. Она позволяет применять колонки значительной длины без существенного перепада давлений, легко осуществлять программирование температуры и значительно сокращать время анализа, приближаясь к экспрессному методу. Эффективность капиллярных колонок значительно выше насадочных. Эти достоинства капиллярной хроматографии позволяют применять ее для анализа многокомпонентных смесей. [c.203]

    Задание. Выполнить анализ искусственных смесей методом капиллярной хроматографии, используя хроматограф Цвет-1-64 , УХ-2 или Хром-2 . В работе могут быть применены колонки из меди, латуни и нержавеющей стали. [c.78]

    В настоящее время известен метод с программированием газового потока , в котором в ходе элюирования непрерывно повышается скорость газа-носителя. Этот метод, так же как и программирование температуры, ведет к сокращению времени анализа. Комбинированием данных методов можно получить оптимальные условия проведения анализа. Для работы с программированием газового потока целесообразно применять капиллярные колонки. [c.370]

    Из двух известных методов заполнения капиллярных колонок неподвижной фазой — статического и динамического [13—15 предпочтение, по-видимому, следует отдать первому как обеспечивающему наибольшую воспроизводимость, хотя и более трудоемкому. [c.34]

    Измерение индексов удерживания не индивидуальных соединений, а неизвестных компонентов сложных смесей, разделяемых на колонках с разными неподвижными фазами, осложняется тем, что далеко не всегда можно уверенно соотнести принадлежащие одному и тому же компоненту пики на различных хроматограммах. При возникновении подобных затруднений весьма полезным оказывается использование метода многоступенчатого разделения ( многомерной хроматографии ), предусматривающего вырезание фракции элюата на выходе насадочной или капиллярной колонки 1-й ступени разделения и дозирование этой фракции, [c.299]

    Гидрирование ненасыщенных углеводородов при этом проводилось не в жидкой фазе, а проще и с затратой меньшего времени — в одной из капиллярных колонок катализатором служил алюминиевый капилляр, на который был нанесен слой платины. Этим путем был осуществлен непрерывный метод анализа. Применение капиллярных колонок, кроме того, привело к улучшению разделения продуктов гидрирования. [c.247]

    Прн помощи масс-спектрометра можно снимать характерные спектрограммы летучих соединений, поэтому его можно использовать для идентификации газохроматографических фракций (если, конечно, они летучи). Стоимость масс-спектрометра сравнительно велика, но он обладает зато-двумя преимуществами 1) качественный анализ выходящего из хроматографической колонки потока газа удается производить непрерывно, без выделения выходящих из колонки веществ 2) для масс-спектрометрии достаточны даже такие малые количества вещества, которые выделяются при капиллярной газовой хроматографии. Поэтому именно в сочетании с капиллярными колонками масс-спектрометрия является наилучшим методом идентификации неизвестных составных частей. [c.265]

    Метод для определения содержания в светлых нефтепродуктах (конец кипения которых не превышает 315 °С) предельных, непредельных и ароматических углеводородов (включая ароматические олефины и соединения с гетероатомами) разработан во ВНИИ НП [61] и рекомендован для топлив, содержащих не более 3% диолефиновых углеводородов. Этот метод во многом соответствует методам ASTMD 1319, IP 156, DIN 5179, методу ISO 3837-75 и рекомендациям СЭВ по стандартизации РС 3378-72. Методы основаны на разделении микродозы в капиллярной колонке, заполненной активным абсорбентом (рис. 22), на группы углеводородов. По методу ВНИИ НП в качестве абсорбента используют активированный силикагель (фракцию 0,07-0,16 мм). [c.59]

    ГЖХ методы обычно служат завершающей стадией разделения концентратов. Если природа анализируемых соединений известна, то этими методами можно получить информацию о количественном составе смеси. В противном случае элюируемые из ГЖХ колонки узкие фракции или индивидуальные соединения можно уловить и проанализировать другими физико-химичЬски-ми методами. Таким способом получена очень большая доля сведений о составе и строении нефтяных ГАС. Современные средства автоматизации газохроматосрафических процессов позволяют использовать в препаративной работе даже капиллярные колонки, способные разделять лишь очень малые количества вещества (не более десятка микрограмм), и путем многократного автоматического ввода проб, улавливания и накопления элюируемых фракций получать миллиграммовые количества соединений, достаточные для анализа спектральными и радиоспектроскопическими методами [166]. [c.21]


    Таким образом, использование в методе имитированной дистилляции для получения кривых ИТК капиллярных колонок при хорошей их обработке может вполне заменить периодическую ректификацию любых нефггепродуктов. Этот метод следует шире внедрять [c.49]

    В предыдущей главе были рассмотрены некоторые групповые характеристики нефтей. Настоящая глава, как и две следующие, посвящена индивидуальным углеводородам нефтей, т. е. содержит результаты работ, выполненных на молекулярном уровне. Все полученные ниже данные были достигнуты с применением наиболее современных методов исследования, таких, как ГЖХ с использованием капиллярных колонок и программирования температуры и хромато-масс-спектрометрия с компьютерной обработкой и реконструкцией хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагмептография или масс-хроматография). Широко использовались также спектры ЯМР на ядрах Большинство рассматриваемых далее нефтяных углеводородов было получено также путем встречного синтеза в лаборатории. При этом применялись как обычные методы синтеза, так и каталитический синтез, приводящий к получению хорошо разделяемых смссеп близких по структуре углеводородов, строение которых устанавливалось спектрами ЯМР на ядрах Идентификация любого углеводорода в нефтях считалась доказанной, если пики на хроматограммах (чаще всего использовались две фазы) совпадали, а масс-спектры этого пика и модельного (эталонного) углеводорода были при этом идентичны. [c.34]

    Выпускаемые в настоящее время промышленностью капилшяриые колонки обычно имеют внутренний диаметр от 0.05 до 0,75 мм и длину от 30 до 105 м. Слой неподвижной фазы толщиной от 0,1 до 0,8 мкм наносят непосредственно на внуфеннюю i юверхносг . колонки или пришиваюг к ней химически. В качестве неподвижных фаз применяют полимеры, каучуки (0V-1, SE-30) или твердые вещества (карбовакс 20 М). Основные характеристики неподвижных фаз. используемых в капиллярных колонках, приведены в табл. 7 5. Существуют различные способы их нанесения. Чаще всего неподвижную фазу растворяют в соответствующем растворителе и наносят на внутреннюю поверхность капилляра динамическим или статическим методами (29 . Дтя достижения стабильной работы колонок в последнее время неподвижные фазы иммобилизуют путем связывания отдельных фупп друг с другом или с поверхностью кварцевого [c.255]

    Эти годы ознаменовались все возрастающим значением исследований по нефтехимии и химии нефти. Внедрение новых методов исследования, особенно газовой хроматографии с использованием высокоэффективных капиллярных колонок, микрореактор-ной техники, стереоспецифического синтеза цикланов путем мети-ленирования, проведение равновесной конфигурационной и структурной изомеризации — все это позволило подойти к решению весьма сложных проблем химии углеводородов, совершенно невыполнимых еще 10 — 15 лет назад. Разработка новых методов анализа, успехи в области синтеза индивидуальных углеводородов весьма сложного строения немедленно нашли свое отражение и в исследованиях, посвященных изучению нефтяных углеводородов. Именно в эти годы в трудах отечественных и зарубежных ученых была показана вся сложность и своеобразность строения нефтяных углеводородов. Была также найдена связь между строением нефтяных углеводородов и строением важнейших природных соединений (изопреноиды, тритерпаны, стераны и т. д.). [c.3]

    Очевидно также, что чем симметричнее структура исходного углеводорода, тем меньше количество (число) образующихся изомеров. Своеобразный характер метиленирования открывает широкие возможности использования этой реакции для получения углеводородных смесей, содержащих весьма труднодоступные для обычного синтеза структуры. Особого успеха в расшифровке смесей, полученных метиленированием, можно ожидать только при использовании газовой хроматографии и высокоэффективных капиллярных колонок. Дело в том, что для получения смеси, состоящей только из ближайших гомологов, а реакция проводится так, что в каждой молекуле замещается только один водородный атом, глубина метиленирования обычно не превышает 2—3%. Однако использование капиллярных колонок и чувствительного пламенно-ионизационного детектора позволяет легко анализировать подобные смеси. Удачное применение метода метиленирования для анализа смесей изомерных нонанов показано в работе [119]. [c.291]

    Однако несдютря на попытку стандартизации методики определения относительных времен удерживания (учет времени удерживания несорбирующегося компонента — метана, использование в качестве реперов доступных углеводородов, близких по строению и телшературам кипения к анализируемым углеводородам, и пр.), автор заранее предупреждает об опасности использования отдельно взятых величин в целях качественной идентификации углеводородов на хроматограммах. Дело в том, что точность воспроизведения значений относительных времен удерживания несколько ниже точности разделения углеводородов, которая достигается в современных высокоэффективных капиллярных колонках. Поэтому, как уже указывалось, единственно надежным методом (причем необходимым, но, к сожалению, далеко не всегда достаточным) качественной идентификации пиков на хроматограммах является использование добавок индивидуальных углеводородов. [c.338]

    А8ТМ О 1319, на основе которого разработан международный метод 150 3837—75. Аналогичный метод подготовлен в СССР (ФИА метод ПГ 401-308—73) и в рекомендациях СЭВ (РС 3378—72). По этим методам микродоза топлива разделяется На группы углеводородов в капиллярной колонке, заполненной активным адсорбентом [3]. В разделительную часть колонки засыпают небольшой слой геля, окрашенного флюоресцирующим красителем. Колонка (рис. 59) в нижней части сужена в верхнюю Часть колонки в слой адсорбента вводят (шприцем) топливо и на кончике шприца каплю флюоресцирующего индикатора (если он Жидкий). Дозу топлива с индикатором продвигают вниз по столбу адсорбента при помощи безводного изопропилового спирта мета-Но-нафтеновые углеводороды группируются в нижней части столба адсорбента, над ними располагаются непредельные углеводороды и в верхней части — ароматические. Колонку подвергают дейст- [c.140]

    Предложен также метод отбора нанофаммовых количеств веществ из воды, заключающийся в адсорбции следовых компонентов на внутренней поверхности иглы микрошприца, покрытой неподвижной фазой для газо-жидкостной хроматофафии иглу затем помещают в горячую зону испарителя хроматофафа, где определяемый компонент термически десорбируется [56]. В другом случае на игле закрепляли короткий отрезок кварцевой капиллярной колонки V OT (длиной 1 см), покрытой изнутри метилсилоксаном. Предел обнаружения примесей составил 1-130 нг/л с пофешностью 1-7% [77]. Аналогичная техника была испо и>зована для определения хлорсодержащих пестицидов [78]. [c.189]

    А. Мартин, М. Голей, Р. Скотт и Д. Дести в Англии разработали в 1957—1960 гг. метод капиллярной хроматографии. Вместо колонки с адсорбентом в этом случае применяется длинный капилляр из стекла или из меди, внутренний диаметр которого составляет 0,2 мм. Стенки этого узкого канала покрыты тонким слоем органического растворителя, нанример сквалана (углеводород СзоНаг)- Длина капилляра, свернутого в спирали, составляет несколько десятков метров. Наибольшей разделительной способностью обладают очень [c.225]

    Предложен новый метод, находящийся на стыке дистилляции и хроматографии — хромадистилляция [13]. Разделяемая смесь вводится в трубку с наполнителем (стеклянными или металлическими шариками) или в капиллярную колонку и при пропускании газа-носителя на заднем фронте жидкости происходит испа- [c.54]

    С новой методологией извлечения и концентрирования токсичных примесей из воздуха связаны и недавно появившиеся в практике пробоотбора капиллярные ловушки [48,49]. Обычно они представляют собой короткие капилляры из кварца или боросиликатного стекла длиной от 5 до 100 см и диаметром 0,3-0,5 мм, внутренние стенки которых покрьггы микрочастицами (10-18 мкм) активного угля или других углеродсодержащих сорбентов. Воздух (2-20 мл) пропускают шприцем через капилляр и после термодесорбции анализируют методом газовой хроматографии с капиллярными колонками. Эту же технику применяют и при работе с микроловушками, внутренние стенки которых покрьггы пленкой неподвижной жидкой фазы или изготовлены из силоксанового полимера. [c.181]

    Были описаны методы идентификации ацеталей в сложных смесях, содержащих эфиры, альдегиды, кетоны и другие соединения [231]. Поток нз капиллярной колонки поступал непосредственно на время-пролетный масс-спектрометр. Один из коллекторов прибора настраивался на ионы с массой 15, которые использовались для регистрации хроматограммы. На втором коллекторе отбирались все ионы в диапазоне 24— 200 ат. ед. массы полный спектр регистрировался на осцилло- графе в течение 6 сек. При хроматографическом разделении земляничного масла с помощью этой методики удалось идентифицировать 150 компонентов. Аналогичным образом исследовалась сложная смесь углеводородов [232]. [c.128]

    Газовый хроматограф Цвет-1-64 представляет собой лабораторный прибор, изготовленный в обыкновенном (не взрывозащищен-ном) исполнении. Предназначен он для анализа смеси органических (с концентрацией от 1 10" до 10%) и неорганических (от ЫО" до 100%) веш,еств, кипящих до 350—400° С и не содержащих агрессивных примесей, способных разрушать стальные детали прибора. Он состоит из трех блоков 1) датчика, состоящего из термостата, катарометра, детектора пламенно-ионизационного (ДИП), испарителя жидкой пробы, газового крана-дозатора 2) блока управления БУ-2, состоящего из панели подготовки газов, усилителя ПВ-2М для ДИП, терморегулятора, блока питания детектора ДИП, блока питания катарометра 3) автоматического самопишущего потенциометра ЭПП-09. Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии на набивных (аналитических), микронабивных и капиллярных колонках в изотермическом режиме. [c.170]

    Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии иа набивных (аналитически) ), микронабивных и капиллярных колонках в изотермическом режиме. Наличие в приборе двух детекторов позволяет регистрировать результаты анализов либо с помощью пламенно-ионизапиониого детектора, либо катарометра. [c.240]

    Анализируя одновременно состав дистиллята и жидкости в перегонной колбе, например рефрактометрическим методом, можно при помощи соответствующих диаграмм или формул определить эффективность колонки, т. е. число теоретических тарелок. Эффективность перегонных колонок зависит от величины поверхности соприкосновения жидкости с паром, степени дефлегмации и скорости перегонки. Например, число теоретических тарелок (ЧТТ) обычной перегонной колбы — 1—3 колбы с дефлегматором длиной 10 си — до 5 ТТ колонки длиной 50 см с металлической насадкой — 30—40ТТ колонки газо-жидкостной хроматографии — 700—4000 ТТ капиллярных колонок в газо-жидкостной хроматографии — до 100 ООО ТТ, [c.48]

    Создание капиллярной газовой хроматографии позволило значительно увеличить эффективность газохроматографического метода. Впервые разделение-на капиллярной колонке осуп ествлеио Голеем в 1956 г. Современный газовый хроматограф с капиллярной колонкой часто сочетается с масс-спектрометром, применяемым в качестве детектирующего устройства. [c.583]

    ЛО, выигрыш во времени, связанный с более высокой эффективностью разделения капиллярной газовой хроматографии, не настолько велик, чтобы отдавать ей нредпочтение в сравнении с более грубым методом колоночной хроматографии. К тому же капиллярная хроматография открывает меньшие возможности для идентификации. Таким образом, капиллярные колонки не могут полностью заменить наполненные колонки, а лишь дополняют их. [c.22]

    Метод нагревания, примененный вначале Голеем (1958а), оказался малопригодным. Он приобрел значение лишь позднее для изготовления модифицированных капиллярных колонок. Неподвижная фаза наносится лучше методом пробки, предложенным Дийкстра и де Гоейем (1958). В основе этого метода лежпт следующий эффект если жидкость пропустить через трубку, то она смачивает стенки трубки и оставляет тонкую пленку. [c.323]

    Хроматографическая колонка длиной 8 м с полиэтиленгликолем 200, нанесенным из 0,5%-ного раствора, при температуре 20° обладала эффективностью разделения, соответствующей 1500 теоретическим тарелкам на 1 м длины. Немодифицированный капилляр при точно таких же условиях имел 150—300 теоретических терелок. Имеется ли в подобного рода капиллярных колонках сплошная пленка, как в голеевских колонках, или неподвижная фаза распределена на дисперсной поверхности, пока точно не установлено. И все же этот метод имел известный успех при использовании полярных неподвижных фаз в капиллярных колонках. [c.331]

    Халас и Хорват (19636) покрыли внутренние стенки капилляра тонко-измельченным твердым носителем, уже содержащим неподвижную фазу, по аналогии с твердослойными капиллярными колонками для газоадсорбционной хроматографии. Неподвижная фаза в капиллярной трубке наносилась так называемым методом испарения. [c.332]


Библиография для Метод на капиллярную колонку: [c.175]   
Смотреть страницы где упоминается термин Метод на капиллярную колонку: [c.82]    [c.103]    [c.90]    [c.288]    [c.255]    [c.263]    [c.287]    [c.180]    [c.366]    [c.171]    [c.172]   
Практическая газовая хроматография (2000) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ прямогонных бензинов методом газо-жидкостной хроматографии с при-, менением капиллярных колонок. Э. К. Брянская, 3. К. Оленина, Ал. А. Петров

Динамический метод нанесения неподвижной фазы на внутреннюю поверхность капиллярной колонки

Капиллярная

Капиллярность

Капиллярные колонки методы покрытия

Методы нанесения сорбента на капиллярные колонки

Определение толщины слоя неподвижной жидкой фазы в капиллярной колонке при нанесении динамическим методом

Разделение углеводородов методом хроматографии газов с использованием капиллярных колонок и ионизационных детекторов. А. Златкис, Д. Лоеелок (пер. М. И. Яновский, ред. Н. М. Туркельтауб)

Статический метод нанесения неподвижной фазы на внутреннюю поверхность капиллярной колонки



© 2025 chem21.info Реклама на сайте