Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протона перенос также Водорода перенос

    В рассматриваемом ниже механизме аномальной подвижности Н3О и 0Н в Н2О водород переносится в водородных связях несомненно в виде протона. В хингидронах переносятся атомы водорода, так как для превращения хинона в гидрохинон нужно перенести не только два протона, но и два электрона. Этим объясняется необычайно высокая энергия активации в данном случае. Действительно, при переносе протона атомы А и В сохраняют принадлежащие им электроны, тогда как при переносе атома водорода они подвергаются глубокой перестройке. Значительное повышение барьера переноса атома Н по сравнению с протоном вызвано также тем, что, согласно донорно-акцепторной схеме Н. Д. Соколова [6], атом водорода отталкивается от атома В [7]. По этим же соображениям следует предполагать, что в односторонних переходах через водородные связи переносятся протоны, а не атомы Н, даже в тех случаях, когда сопровождающие процессы могли бы компенсировать перенос электронов. [c.434]


    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]

    Важные результаты можно получить, руководствуясь представлением об и д -промотировании, а также используя наши результаты по расчету применения констант диссоциации кислот при возбуждении [29] для объяснения фотохимических реакций переноса водорода. До настоящего времени нет полной ясности в механизме этих важных реакций. Сейчас можно сделать только следующее предположение при возбуждении молекулы, которая имеет и-электроны и принимает атом водорода, переносится сразу атом водорода [И], при возбуждении молекулы донора протонов предпочтительным является перенос протона на первой стадии. [c.7]

    В некотором отношении аналогичным образом число переноса ионов водорода изменяется при добавлении к раствору гликоля и глицерина (рис. 4.35 и 4.36), однако спад значений числа переноса не столь значителен. В растворе с глицерином число переноса при 25 °С в точке относительного минимума выше, чем в чистой воде, благодаря довольно значительному начальному увеличению. Кроме того, минимум числа переноса появляется при более низкой концентрации гликоля или глицерина по сравнению с растворами, содержащими одноатомные спирты. Следует также отметить, что число переноса ионов водорода в почти безводном гликоле и особенно в глицерине выше, чем в чистой воде. Различие в этом отношении свойств гликоля и глицерина, с одной стороны, и одноатомных спиртов — с другой, можно объяснить наличием в молекуле гликоля или глицерина двух или трех гидроксильных групп, которые могут быть посредниками переноса протонов. Число переноса ионов водорода в гликоле выше, чем в воде возможно, независимость атомов кислорода двух гидроксильных групп молекулы гликоля опособствует прототропному механизму. [c.451]


    Диоксан в низкой концентрации также увеличивает число переноса ионов водорода в воде, однако последующее монотонное снижение его показывает, что электричество по механизму прототропной проводимости через молекулы диоксана не переносится. По данным исследований Эрдеи-Груза и На-ги-Чако [59а], число переноса ионов водорода в растворах соляной кислоты изменяется с концентрацией диоксана так, как показано на рис. 4.35 и 4.36. Повышение числа переноса при добавлении небольших количеств диоксана можно объяснить упорядочивающим влиянием этого неэлектролита. При концентрации диоксана более 5 мол. % число переноса ионов водорода снижается плавно до содержания диоксана 52 мол. %, а затем — резко, и в растворах с 60 мол. % диоксана число переноса меньше 0,5. В этом растворе доля прототропной проводимости при 25 °С пренебрежимо мала. На этом основании можно заключить, что диоксан не способен к переносу протонов по прототропному механизму. [c.452]

    В растворах глицерина, содержащих небольшие количества воды, число переноса ионов гидроксила выше не только числа переноса ионов гидроксила в чистых водных растворах, но также числа переноса онов водорода, измеренного в чистых водных растворах. Эти факты показывают, что влияние гликоля и глицерина на число переноса ионов гидроксила в водных растворах КОН зависит от концентрации неэлектролита. В низкой концентрации гликоль и глицерин снижают долю прототропного механизма в переносе электричества. В растворах с большим содержанием этих неэлектролитов доля прототропной проводимости быстро возрастает, что в этих условиях означает перенос протонов не через молекулы воды, а через молекулы глицерина. Механизм прототропной проводимости через гликоль почти так же эффективен, как через воду, но через глицерин он намного эффективнее. [c.455]

    Электрохимическое перенапряжение обусловлено замедленным протеканием стадии переноса заряда, т. е. стадии разряда или ионизации частиц. Поэтому в литературе для характеристики явлений, связанных с электрохимическим перенапряжением, как уже указывалось, широко используются термины замедленный разряд или замедленная ионизация . Теория процессов, скорость которых определяется переносом заряда, также часто называется теорией замедленного разряда . Термины электрохимическое перенапряжение , замедленный разряд и перенапряжение переноса заряда употребляются как синонимы. Однако сущность собственно электрохимической стадии не сводится ни к простому изменению заряда частиц (акт разряда), ни к переносу заряда через границу раздела электрод — электролит. Приобретение (или потеря) частицей электрона означает одновременно изменение ее физико-химического и энергетического состояния. Так, например, находящийся в растворе ион водорода, получив электрон от электрода, превращается из сольватированного протона в адсорбированный электродом атом водорода [c.315]

    При прочих равных условиях на коэффициент активности переноса ионов водорода существенное влияние оказывает взаимодействие растворенного вещества с растворителем, обусловленное той или иной кислотностью или основностью растворителя. Если основность растворителя больше основности воды, то протон кислоты сильнее притягивается к растворителю, чем к воде, и, следовательно, активность кислоты в этом случае меньше, чем прн той же концентрации в воде. И, наоборот, если основность растворителя меньше, то коэффициент активности переноса больше. Однако, при сравнительных оценках такого рода следует проявлять осторожность, так как диэлектрическая проницаемость растворителя и зарядовый тип кислоты тоже оказывают большое неспецифическое влияние. Очень важно также учитывать сопряженное основание. Так, ионы ацетата ассоциируются с катионами в разной степени, поэтому ацетаты различных металлов не проявляют одинаковую основность. [c.79]

    СВОДИТСЯ не к переносу ионов водорода из матрикса в межмембранное пространство, а, наоборот, к транспорту протонов внутрь митохондрии, к снятию электрохимического градиента Н и, само собой разумеется, к синтезу (сопряженно с переносом Н" с внешней стороны сопрягающей мембраны на ее внутреннюю сторону) АТФ. Поэтому ее называют также АТФ-синтазой, что подчеркивает ее истинную функцию в митохондриальной мембране. [c.426]

    Лимитирующая стадия переноса протона может осуществляться также после стадии ковалентной перестройки с участием тяжелых (по сравнению с атомом водорода) атомов  [c.103]


    Различают следующие основные оксидоредуктазы аэробные дегидрогеназы или оксидазы, катализирующие перенос протонов (электронов) непосредственно на кислород анаэробные дегидрогеназы, ускоряющие перенос протонов (электронов) на промежуточный субстрат, но не на кислород цитохромы, катализирующие перенос только электронов. К этому классу относят также гемсодержащие ферменты каталазу и пероксидазу, катализирующие реакции с участием перекиси водорода. [c.160]

    Из табл. 5.1 видно также, что катионы и анионы одинакового заряда отличаются молярными электропроводностями, которые зависят от природы ионов. Обращает на себя внимание высокая подвижность ионов водорода и гидроксида. Это связано с переносом протона по туннельному механизму между Н3О" - Н2О. Аномально высокая электропроводность протонов наблюдается также в схшртах и в безводной серной кислоте. Высокую электропроводность в водных и спиртовых растворах имеют и ионы гидроксида, что объясняется возникновением протонных дырок. [c.151]

    Классические работы Веннесланда, Вестхеймера и их сотр. показали, что водород переносится непосредственно с субстрата на кофермент, без обмена с протонами растворителя. Эти исследования подтвердили также стереоспецнфичность переноса водорода (см. обзор Коловика и др. [15]). С дрожжевой алкогольдегидрогеназой было проведено два типа экспериментов схемы (6) и (7) . [c.586]

    Однако в связи с другими реакциями изомеризации, алкилирования и т. п. представляется возможным, что столь большое соотношение между числом молекул полимера и числом молекул катализатора может указывать на легкий перенос протона к молекулам мономера, подобный переносу атома водорода в реакции свободнорадикальной полимеризации. В частности, при полимеризации простых виниловых эфиров и алкенов-1 молекулярные веса полученных продуктов низки. Осуш,ествление обрыва также возможно путем отрыва гидрид-иона либо от неактивного полимера, либо от карбониевого иона, однако это не должно обязательно уменьшать молекулярный вес, но может привести к получению разветвленных молекул. [c.432]

    Кислотно-основные реакции, протекающие в водных растворах, характеризуются гораздо легче, чем какие-либо иные виды химического взаимодействия в воде, поскольку эти реакции в основном связаны лищь с переходом ионов водорода от донора к акцептору протонов. Используя эти реакции, можно получить подробные сведения об идентичности реагирующего вещества и продукта в реакциях переноса протона, а также с некоторой достоверностью установить наличие равновесия и определить константы равновесия, которые управляют поведением кислотно-основной системы. В настоящей главе мы рассмотрим вопросы, касающиеся природы кислот и оснований в воде, методы расчетов равновесий в кислотно-основных системах, а также теорию и методы кислотно-основной титриметрии. [c.99]

    Широко исследовалось влияние природы и концентрации неэлектролита, температуры раствора на механизм прототропной проводимости ионов водорода и гидроксила. Можно полагать, что ионы оксония (Н3О+) и гидроксила переносят электричество не только путем перехода протонов, но также обычйой гидродинамической миграцией. Для облегчения интерпретации экспериментальных данных по изучению проводимости растворов следует определить долю участия в переносе электричества каждого механизма переноса. Эти два типа проводимости нельзя измерить и изучить раздельно, однако их можно приближенно вычислить, полагая, что значения гидродинамической подвижности ионов Н3О+ и 0Н не отличаются заметно от значений подвижности ионов, равных им в данной среде по размеру и заряду и не переносящих электричество по протопропному механизму. В кристаллической решетке радиус иона оксония гнзО+ =1,38—1,40 А, иона гидроксила гон-= 1,32—1,40 А. Радиусы ионов К+ и F почти равны этим ионным размерам (гк+ = 1,33 А, гр-=1,33 A), поэтому в первом приближении можно полагать, что разница между проводимостью растворов НС1 и КС1 в одинаковых условиях соответствует проводимости иона водорода по прототропному механизму, тогда как разница между проводимостью растворов КОН и KF представляет прототропную проводимость ионов гидроксила. С другой стороны, сравнение значений проводимости растворов KF и КС1 дает информацию об изменении условий в растворе при переходе от величины ионного радиуса гр- = 1,ЗЗА до гс1-=1,81 А. [c.437]

    Степень внутримолекулярного протонировапия не зависит, по-видимому, от таких факторов, как кислотность растворителя, концентрация протонодорных агентов (наблюдаемые здесь изменения очень незначительны), способность растворителя облегчать диссоциацию или природа основания. Такие моменты, как существование аллильного аниона в виде ионной пары или в диссоциированном состоянии, а также координация катиона ионной пары с молекулами растворителя играют второстепенную роль даже по сравнению с изотопными эффектами. Эти результаты резко отличаются от тех, которые были получены при изучении стереохимии катализируемого основаниями обмена дейтерий — водород при асимметрическом углеродном атоме. Пространственная направленность реакции изотопного обмена мало зависела от положения изотопной метки (в субстрате или в системе растворитель — основание), но сильно зависела от других факторов. В отличие от стереохимии обмена водород — дейтерий внутримолекулярный перенос протона в большой степени зависит от водородной связи. [c.199]

    О — О, равном 2,45 А. Как уже было показано, это расстояние, принятое в наших расчетах как наиболее подходящее, подтверждено рентгеновскими данными [61], что обсуждалось Грэном [55]. Было также отмечено [93], что если принять расчеты Хаггинса [183], показавшего, что при расстоянии связи О — О, меньшем чем 2,65 А, водородная связь является симметричной, то при расстоянии, равном 2,45 А, барьер для переноса протона должен был бы отсутствовать. Этот вывод, основанный на старых расчетах, не может считаться обоснованным [1696], если учесть тот экспериментальный факт, что в КН2Р04, где расстояние О — О для водородных связей составляет 2,55 А, т. е. меньше, чем критическая величина Хаггинса, обнаружена остаточная энтропия, связанная с вырождением положения водорода (полезно сравнить со случаем для льда), что, таким образом, указывает на асимметрию положения атомов Н в водородных связях. К тому же метод Хаггинса применим только для гипотетического случая атома Н в симметричной О — Н- О-структуре (например, между двумя молекулами воды) и неприменим в случае водородной связи между Н3О+ и Н2О, где энергия О — Н-связи в Н3О+ гораздо больше, чем в молекуле воды. [c.137]

    Протон выделяется среди однозарядных ионов тем, что не имеет электронов вокруг ядра, и хотя этим же свойством обладают некоторые многозарядные катионы (например, Не2+, Ь13+), ни один из них не играет столь важной роли в химических процессах, протекающих в обычных условиях. Отсутствие электронов означает, что радиус протона равен 10 см, в то время как для других ионов его величина составляет см. Вследствие такого малого радиуса протон обладает необычно сильной способностью поляризовать любую соседнюю молекулу или ион, и поэтому свободный протон встречается только в вакууме или в очень разбавленном газе. Мы увидим, однако, что широкий круг процессов можно рассматривать как реакции переноса протона, которые считаются простыми, так как представляют собой движение лишенного электронов ядра. Особенность процессов переноса протона состоит также и в том, что они протекают без существенной перестройки связывающих электронов и без участия сил отталкивания между- несвязывающими электронами. В терминах современной органической химии это означает, что протон обладает низкими стерическими требованиями. Некоторые реакции, конечно, включают перенос атома водорода, а не протона, но они протекают обычно в более жестких условиях, например при высоких температурах в газовой фазе, под действием облучения или бомбардировки частицами высоких энергий. Реакцию переноса протонов довольно просто отличить от реакции переноса атомов водорода. Но для других элементов (особенно галогенов) часто необходимо рассматривать возможность как гетеролитического, так и гомолитического механизмов. [c.9]

    АцетиЛ КоА, образующийся из пирувата, а также из продуктов обмена амипокислот и жирных кпс.ют, представляет собой активированную форму ацетата в такой активированной форме ацетат вступает в цикл Кребса. Цикл Кребса начинается реакцией оксалоацетата с ацетил-КоА, и именно оксалоацетат регенерируется в качестве конечного продукта цикла таким образом, цикл Кребса в целом выполняет катал 1тическую функцию. Определенные реакции цикла (показанные на схеме) сопровождаются переносом атомов водорода (электронов и протонов) на НАД или фланопротеид. На каждые [c.41]

    Кроме указанных неверных утверждений о методологических основах и несуществующих скрытых целях нашей работы Б. И. Степанов приводит возражения по существу ее выполнения и выводов, с которыми также нельзя согласиться. Опровергаемая нами для данного случая схема превращения по ионизационному механизму им совершенно неправильно понята, хотя в нашей статье (и в ней же цитированной более подробной предыдущей работе [41) вопрос ясно изложен. Речь идет не о кислотной диссоциации с образованием свободного водородного (или оксониевого) иона, а о протолитической реакции обратимого переноса протона между двумя молекулами. Поэтому константа электролитической диссоциации толуола в эфире не может служить критерием возможности или скорости такого переноса. В той же шкале константы электролитической диссоциации флюорена и ксантена равны 10——10 28 д,1.о де мешает им обменивать водород на дейтерий в связях С—Н по ионизационному механизму. Неверно и то, что представление о кислотных функциях толуола противоречит всем представлениям органической химии замещение в нем метильного водорода металлами хорошо известно. Столь же неосновательно утверждение Б. И. Степанова, что мы не могли заметить обмена, так как при малых величинах равновесной концентрации дейтерия и константы электролитической диссоциации обмен должен был бы дать ощутимые результаты лишь через промежутки времени, в колоссальное число раз превышающие возможности экспериментатора. Мы не знаем, на каких вычислениях основаны эти соображения (если на величине константы кислотной диссоциации толуола, то они неверны, см. выше), но они во всяком случае не имеют ничего общего с реальным химическим мышлением. Действительно, чисто формально можно допускать, что любая не подтверждаемая опытом реакция все же идет неизмеримо медленно, но ни один химик не станет искать в ней причину превращений, наблюдаемых в рамках времени, отвечающих обычным лабораторным условиям. В то же время мы нашли, что обмен не достигает 0,5% от равновесного за время до 68 ч при температуре до 168° С, тогда как нитрование в несравненно более мягких условиях (за 2 ч при 15° С) дает 8% фенилнит-рометана [51. Сопоставление этих данных ясно показывает, что реакция нитрования толуола в боковой группе не может идти через стадию таутомерного превращения по ионизационному или какому-либо иному механизму из тех, которые дают возможность для обмена с водой. Здесь же нужно отметить, что возражение Б. И. Степанова о недоказательности наших опытов из-за недостаточной точности изотопного анализа основано на элементарной ошибке. Мы указываем, что полный обмен каждого атома водорода должен был дать повышение плотности воды от сожжения на 260 у, т. е. всего на 1300—1560 у, так как в случае таутомеризации в обмене участвуют пять или шесть таких атомов (метильные, орто- и, возможно, пара-). Мы же нашли в восьми опытах — [c.169]

    Как показали опыты, проведенные нами совместно с Ю. А. Овчиннниковым и его коллегами, удаление трех аминокислот с N-конца, 17 аминокислот с С-конца, а также пяти аминокислот (от Mei-68 до Gly-72) из гидрофильной связки между а-спиралями Б. и С не влияет на транспорт протонов и кинетику отдельных электрогенных стадий. Впоследствии это наблюдение было подтверждено X. Г. Кораной и сотрудниками, которые не только расщепили бактериородопсин на два фрагмента А—В и С—G), но и препаративно разделили эти фрагменты, а затем реконструировали в протеолипосомах. Полученная система была способна к светозависимому переносу ионов водорода. [c.112]

    За время Т электрон цожет распространять лишь фрагменты силовых линий и силовых трубок. Поэтому такие силовые трубки не могут своими двумя концами заканчиваться электроном и протоном. Лишь по истечении времени т = Ех , когда радиус орбиты атома водорода повернется на центральшш угол сектора а, все эти встречно распространяющиеся силовые трубки электрона и протона (рис. 1) образуют кривую, оба конца которой заканчиваются электроном и протоном. Согласно [7], электромагнитные волны могут сообщать ускорение электрону лишь в том случае, если они проходят через электрон. Такая возможность в секторе атома водорода реализуется лишь после поворота радиуса орбиты на центральный угол а. Видно, что именно в этот момент образуется центральная силовая трубка, соединяющая протон и электрон. Так как центральная силовая трубка складывается из фрагментов в одно и то же время, то взаимодействие между протоном и электроном и в атоме водорода, посредством центральной силовой трубки, осуществляется также "мгновенно". Следовательно, благодаря образованию центральной силовой трубки, силы инерции электрона, возникшие при ускорении свободного падения на протон при движении по круговой орбите, равны силе кулоновского притяжения электрона и протона, но направлены в противоположные стороны. Согласно [1], стоячая электромагнитная волна, полученная наложением параллельных отраженных волн на такую же падающую волну, не переносит никакой энергии электромагнитного поля, так как падающая и отраженная волны переносят одно и то же количество энергии, но в противоположных направлениях. Следовательно, и в случае движения электрона в атомах и молекулах, при условии параллельности силовы линий, исходящих от противоположных зарядов, в центральных силовых трубках создается электромагнитная "невесомость" на данных участках их поверхности. [c.27]

    Е торым структурным фрагментом называют группировки, обеспечивающие процессы переноса электронов и протонов. Сюда относят полупроводниковые цепи и структуры, ответственные за так называемое трансгидрироваиие нли перепое водорода. Легко видеть, что этот тип структурных фрагментов всецело связан с необходимостью привлечения углерода, а также других органогенов, способных образовывать двойные связи и служить донорами и акцепторами протонов. Нетрудно видеть также, что эти группировки служат началом или полупроводникового, т. е. окислительновосстановительного, или кислотно-основного катализа. [c.197]

    Стерические эффекты могут быть вызваны также напряжением других типов. 1,8-быс-(Диэтиламино)-2,7-диметокси-нафталин (2) — исключительно сильное основание в ряду третичных аминов (р/(а сопряженной кислоты равно 16,3 по сравнению с р/Са Ы,Н-диметиланилина, равным 5,1), но перенос протона от атома азота и к нему происходит настолько медленно, что за этим процессом можно следить с помощью УФ-спектрофотометра [101]. Значительное напряжение в молекуле 2 вызвано тем, что неподеленные электронные пары атомов азота вынуждены находиться рядом друг с другом. При протонировании напряжение ослабевает, так как одна из неподеленных пар образует связь с водородом, который в свою очередь образует водородную связь со второй неподеленной парой. Аналогичный эффект наблюдается в 4,5-бис-(диметиламино) флуорене (3) [101а]. [c.346]

    Экспериментальные данные показали, что кобальтовый катализатор при его концентрации, сопоставимой с концентрацией субстрата, действует исключительно по С-Н -связям а-углеводородного атома метальной группы -адамантилтолуола и п-метилацетофенона. Данные кинетического анализа и квантово-химического расчета показали, что причиной столь высокой селективности окисления метильной группы в присутствии адамантильной или ацетильной группы в данной окислительной системе является возможное протекание реакции одноэлектронното переноса между субстратом и катализатором с образованием катион-радикала с последующей его стабилизацией путем отщепления протона. В адамантильной или ацетильной группе такой процесс невозможен из-за оггсутствия протона у а-углеродного атома. Кроме того, при таком механизме реакции на стабилизацию катион-радикала значительное влияние оказывают стерические и полярные факторы, что также можст указывать на большую реакционную способность метильной группы из-за наличия иа атоме водорода этой группы большого положительного заряда Такое возрастание величины заряда относительно основного состояния и других атомов водорода связано с проявлением о-я-сопряжения СЛ-связи метильной группы с бензольным кольцом. [c.44]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]

    Такого типа кинетическая зависимость наблюдалась при присоединении НС1 к 2-метилбутену-1, 2-метилбутепу-2, 1-метилцпклоиентену-2 [2] н циклогексену [3 . Присоединение бромистого водорода к цикло-пентену также является реакцией третьего порядка [4), Обычно переходное состояние реакций, оипсываемых выражением для скорости реакиии третьего порядка, включает перенос протона к алкеиу от одной молекулы галогсиоводорода н захват галогенид-иона от другой молекулы. .V, [c.241]

    Цитохромоксидаза представляет собой сложный белковый комплекс, в состав которого входит по меньшей мере 8 индивидуальных полипептидов. Во внутримолекулярном переносе электронов участвуют простетические группы фермента гемы а и з, а также 2 атома меди ua и ub. Трансмембранный перенос электронов от цитохрома с к молекулярному кислороду сопровождается векторным переносом протона из матрикса митохондрий в межмембранное пространство. Разность электрохимических потенциалов ионов водорода, генерируемая в цитохромоксидазной реакции на мембране митохондрий, может быть использована для синтеза АТФ. [c.432]

    Как следует из табл. 13.1 и 13.2, достижение предельно высоких анодных потенциалов, помимо использования тетрафтор-боратов н гексафторфосфатов, возможно при понижении температуры [59] нли при использовании таких растворителей, как трифторуксусная [60, 67, 68] и фторсульфоновая [57, 69—72] кислоты. Окисление углеводородов проводили также в ннгроме-тане, нитроэтане, пропиленкарбонате, сульфолане и дихлорме тане [73]. Наблюдавшиеся потенциалы в случае необратимого окисления постоянны, и их можио предсказать. Во многих случаях этн потенциалы хорошо коррелируют с потенциалами ионизации [56, 58, 74] и с константами о+ [63, 64] в последнее время потенциалы ио11нзации обычно измеряют методом фотоэлектронной спектроскопии. Общая тенденция изменения потенциалов окисления может быть выведена исходя нз структур углеводородов на основе механизма, включающего перенос электрона с последующим быстрым разрывом связей углерод—водород или углерод—углерод Для таких случаев на наблюдаемый потенциал влияет скорость последующей реакции. С этим связаны относительно низкие потенциалы окисления напряженных углеводородов, катион-радикалы которых, как можно ожидать, способны подвергаться фрагментации (см табл 13 4) Таким же образом можно объяснить низкий потенциал окисления циклогексадиена-1,4 (см. табл. 13.3) в этом случае быстрое отщепление протона катион-радикалом приводит к циклогексаднениль-ному радикалу. [c.409]

    Наряду с разрывом углерод-углеродных связей ионы металлов способствуют расщеплению связей углерод—водород. Для этого необходимо, чтобы ион металла координировался с субстратом в строго определенном месте. Целый ряд многозарядных катионов (в порядке эффективности медь(П), никель(П), лантан(1П), цинк, марганец(П), кадмий, магний и кальций) катализирует бромирование этилацетоацетата и 2-карбоэтокси-циклопентанона. Аналогично ионы цинка катализируют иодирование пирувата и о-карбоксиацетофенона. В этих процессах галогенирования кетонов скоростьлимитирующей стадией является образование енола с переносом протона на общее основание. Как и при декарбоксилировании, ион металла катализирует реакцию за счет стабилизации отрицательного заряда, генерирующегося в ходе разрыва связи углерод—водород. Относительная каталитическая эффективность перечисленных выше катионов изменяется в том же порядке, что и устойчивость их комплексов с салициловым альдегидом, а также согласуется с ено--лятным механизмом каталитического декарбоксилирования. [c.224]

    Вплоть до стадии убихинона переносу подвергаются два протона и два электрона. На последующих ступенях в цепи дыхания переносятся только электроны. Они переносятся через ряд стадий одноэлектронного переноса на кислород. В последней части цепи дыхания участвуют различные цитохромы, цитохромокспдазы, а также кислород как акцептор электронов. При окислении водорода, начиная с NADH, по цепи дыхания высвобождается около 217 кДж, что частично выделяется в виде тепла, а частично запасается в АТР. В рамках цепи дыхания осуществляется три фосфорилирования между NADH и FAD, между цитохромом Ь и цитохромом Си а также между цитохромоксидазой и кислородом. На фосфорилирование трех молей ADP затрачивается 96 кДж, что соответствует примерно 45% всей освобождающейся энергии. [c.709]


Смотреть страницы где упоминается термин Протона перенос также Водорода перенос: [c.12]    [c.312]    [c.92]    [c.117]    [c.89]    [c.28]    [c.125]    [c.562]    [c.199]    [c.486]    [c.141]    [c.89]    [c.371]    [c.113]    [c.363]    [c.142]   
Структура и механизм действия ферментов (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водорода перенос также Гидрид-ион, Протона перенос



© 2025 chem21.info Реклама на сайте