Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы как компоненты липидов

    Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Следует добавить, что блокирование одного какого-либо специфического пути обмена даже одной аминокислоты, обычно наблюдаемое при врожденных пороках обмена, может привести к образованию совершенно неизвестных продуктов обмена, так как возникают условия для неспецифических превращений всех предшествующих компонентов в данной цепи реакций. Отсюда становятся понятными трудности интерпретации данных о регуляции процессов азотистого обмена в норме и особенно при патологии. Этими обстоятельствами можно объяснить исключительную перспективность изучения обмена белков с целью выяснения особенностей их катаболизма и синтеза, овладение тонкими молекулярными механизмами которых, несомненно, даст в руки исследователя ключ к пониманию развития и течения патологических процессов и соответственно к целенаправленному воздействию на многие процессы жизни. [c.410]


    Углеводы при хранении пищевого сырья, его переработке в готовые продукты претерпевают разнообразные и сложные превращения. Они зависят от состава углеводного комплекса, условий (влажность, температура, pH среды), наличия ферментов, присутствия в перерабатываемых продуктах других компонентов, взаимодействующих с углеводами (белки, липиды, органические кислоты и т. д.). [c.55]

    Особенно четко потребность в восстановителе проявляется, если основным или единственным источником углерода для конструктивных процессов служит СО2 — предельно окисленное углеродное соединение. Для превращения углекислоты в структурные компоненты клетки и клеточные метаболиты необходимо ее восстановление до уровня углеводов, белков, липидов. Это же справедливо и при использовании в качестве источника углерода органических соединений, более окисленных, чем вещества тела, например ацетата. [c.281]

    Для протекания процессов биосинтетической природы необходима не только энергия в форме АТФ, но и восстановитель. Особенно четко потребность в восстановителе проявляется, если основным или единственным источником углерода для конструктивных процессов служит СО2 — предельно окисленное углеродное соединение. Для превращения углекислоты в структурные компоненты клетки и клеточные метаболиты необходимо ее восстановление до уровня углеводов, белков, липидов. Это же справедливо и при использовании в качестве источника углерода органических соединений более окисленных, чем вещества тела, например ацетата. [c.241]

    При использовании радиоизотопов существенным является приготовление образца. В случае измерения радиоактивности счетчиком Гейгера — Мюллера важным является снижение процента самопоглощения р-частиц, т. е. уменьшение толщины образца. Если используется сцинтилляционный счетчик, образец должен быть полностью растворен. Учитывая то, что в качестве растворителей используются толуол, ксилол, диоксан, мембранные компоненты — липиды, белки и липопротеиды — хорошо растворяются. Хуже обстоит дело с исследованием углеводов и гликопротеидов. Плохая растворимость приводит к образованию агрегатов и, следовательно, к увеличению самопоглощения р-частиц, а также к снижению энергии прошедших через образец. Для уменьшения размеров агрегатов используют поверхностно-активные вещества. В ряде случаев образец сорбируют на соответствующих фильтрах (стекловолокне, бумаге, нитроцеллюлозе и др.). [c.126]

    Методы газовой хроматографии очень эффективны для разделения многих компонентов тканей и биологических жидкостей (липидов, аминокислот, углеводов), эфирных масел, циклических соединений, атмосферных газов и т. п. [c.148]


    Строение белка. Различают простые и сложные белки. В настоящее время достигнут значительный прогресс в области изучения строения белка. Простой белок рассматривают как продукт поликонденсации аминокислот, т. е. как специфический природный полимер. Сложные белки состоят из простого белка и небелковых компонентов — углеводов, нуклеиновых кислот, липидов или других соединений. [c.175]

    Различают простые и сложные белки. Простой белок рассматривают как продукт поликонденсации аминокислот, т. е. как специфический природный полимер. Сложные белки состоят из простого белка и небелковых компонентов — углеводов, нуклеиновых кислот, липидов и других соединений. [c.199]

    Мембраны состоят в основном из белков и липидов [10], весовое соотношение между которыми колеблется приблизительно от 1 4 в миелине до 3 1 в мембранах бактерий. Наиболее типичным можно считать, однако, весовое соотношение этих компонентов 1 1. В мембранах иногда присутствуют также в незначительных количествах углеводы (менее 5 %) и следы РНК (менее 0,1%). Наличие липидных компонентов обусловливает такие свойства мембран, как высокое-электрическое сопротивление, непроницаемость для ионов и других полярных соединений и проницаемость для неполярных веществ Так, например, для большинства анестезирующих препаратов характерна высокая растворимость в липидах, обеспечивающая возможность их проникновения через мембраны нервных клеток. [c.338]

    Опишите строение биологических мембран и специфические функции липид-, белок- и углевод-содержащих компонентов. В чем состоят различия между внутренней и наружной поверхностями мембраны  [c.398]

    Так, например, достигнуты большие успехи в извлечении растительных белков. Этому предшествовали в первую очередь работы по экстрагированию липидов (масла и жиры), а также извлечению углеводов (сахара и крахмалы). Сохраняет актуальность и процесс разделения компонентов сельскохозяйственного сырья для их более рационального использования в пищевой промышленности в форме изолятов, самих по себе функционально привлекательных, включаемых в состав различных смесей. [c.6]

    В целом растительные белки не предназначены для потребления в чистом виде, как это возможно в отношении животных белков мяса. Если с точки зрения питательности различия между этими двумя типами белков невелики, то внешний вид, форма подачи и включение в продукты в качестве ингредиентов играют большую роль в использовании растительных белков. Необходима изобретательность для удачного введения белковых компонентов растений в кулинарные изделия и блюда. Кроме того, желательно давать этим растительным белкам более привычные для покупателей названия, подобные названиям крахмал, масло, мясо, картофельная мука, жир, а не такие, как липиды, углеводы. Но что бы [c.6]

    Среди различных элементов питания белкам принадлежит особенно важное место. Потребность в них всех видов животных и человека весьма высока (от 14 до 25 % сухой массы рациона в зависимости от вида и физиологического состояния организма). Белки не могут быть заменены никакими другими компонентами пищи (углеводами, липидами). Их значимость обусловлена преимущественно следующими функциями организма  [c.568]

    Мембраны - надмолекулярные комплексы толщиной в несколько молекул. Их размеры составляют 60-100 А. Основные составные части мембран -белки и липиды, а также углеводы. Между всеми компонентами мембран существуют нековалентные кооперативные взаимодействия. [c.107]

    Биохимическая логика жизнедеятельности - переход от гена к признаку. Он осуществляется уникальными биомолекулами (ДНК и РНК) с участием не менее своеобразных биокатализаторов - ферментов. Жизнь сама по себе - сложнейший метаболический процесс, в котором активно действуют главные макромолекулы белки, углеводы, липиды, составляющие их низкомолекулярные компоненты и многочисленные биологически активные вещества, выполняющие как структурную, так и регуляторную роль. [c.118]

    Сложные белки состоят из макроглобулы простого белка, к которой присоединены другие компоненты углеводы или липиды, фосфорная кислота и т. п, Нуклеопротеиды, строение которых особенно интенсивно изучается в последнее время, состоят из белка и нуклеиновой кислоты. Нуклеиновая кислота соединена с простым белком, причем характер их связи еще не выяснен. [c.180]

    Между этими крайностями имеются всевозможные системы, содержащие больше или меньше белковой компоненты и больше или меньше полисахаридной. Такие соединения называют гликопротеинами, а также протеогли-канами (гликаны — общее название полисахаридов). Точного определения у этих терминов нет, и те или иные классы биополимеров называют либо гликопротеинами, либо протеогликанами, руководствуясь при этом скорее традицией, чем какими-либо четкими критериями. Аналогично обстоит дело с ковалентно связанными углеводами и липидами их называют гликолипидами, а также линонолисахаридами. Весь же тип природных высокомолекулярных соединений, включающих ковалентно связанные фрагменты полимеров более чем одного класса, называют смешанными биополимерами, а в последнее время — гликоконъюгатами. [c.44]


    Общие сведения. Высшие полисахариды — полимеры, состоящие из множества структурных звеньев - остат-ков моносахаридов. По принятой классификации углеводов к высшим полисахаридам относят соединения, в состав молекул которых входит более 10 остатков моноз. Они не обладают сладким вкусом, не кристаллизуются ИЯ водных растворов, болг.ишпство из них образует коллоидные растворы. При гидролитическом расн1епле-нии, катализируемом кислотами или ферментами, полисахариды распадаются ла олнго- и моносахариды. Остатки моноз в молекулах полисахаридов соединены гликозидными связями в длинные, часто разветвленные цепи. В зависимости от вида моно , образующих молекулу полисахарида, различают гомо- и гетерополисахариды. Молекулы гомополисахаридов состоят из многочисленных остатков одного моносахарида (глюкозы, фруктозы, галактозы, маннозы и т. д.). В состав молекул гетерополисахаридов входят разнообра.чпые монозы, причем они часто связаны с неуглеводными компонентами (липидами, белками, аминокислотами и т. д.). [c.214]

    В биологических системах ионы металлов образуют жомплёксы с лигандами, имеющими донорные атомы О, S и N, например с аминокислотами, белками, ферментами, нуклеиновыми кислотами, углеводами и липидами. Многие заболевания вызываются либо недостатком или избытком в организме незаменимых ионов металлов, либо попаданием в ткани токсичных веществ, опасных металлов или радиоактивных веществ. С точки зрения биохимии болезни вызываются либо несбалансированностью в организме взаимодействий ион - лиганд, либо конкуренцией чуждых для организма веществ с нормальными компонентами тканей [ 121. [c.269]

    В общем балансе органического вещества морских растершй и животных большая часть приходится на фитопланктон. Значительной является также часть вещества, приходящаяся на бактерии и бeнтoQ. Доля вещества рыб невелика. По данным Н. Б. Вассоевича и О. А. Радченко, биомасса рыб Черного моря составляет лишь около 1 % от общего количества органического вещества. В составе рыб и других морских животных основными компонентами являются белковые вещества, углеводы и липиды. [c.112]

    Аммиак превращается в мочевину. Кетокислота может участвовать в различных (в зависимости от природы радикала Я) обменных реакциях. Если Н является метилом, то образовавшаяся кетокислота будет пировиноградной она может включиться в лимоннокислый цикл или же пойдет на образование гликогена. Из нее может образоваться ацильный остаток, способный включиться в липогенетический цикл. Таким образом, белковые компоненты пищи могут превращаться в углеводы и липиды. Взаимопревращения этих трех классов питательных веществ будут суммированы в конце этой главы. [c.403]

    Однако ни одна классификация не в состоянии охватить по отдельности все эти индивидуальные органические соединения. Их приходится группировать в определенные классы и характеризовать индивидуально. Любопытно заметить, что большинство органических соединений, представляющих интерес для геологии, имеет некоторое структурное сходство с бывшим живым веществом. Даже Компоненты, когда-то синтезированные на добиогенной стаДии развития Земли, не очень отличаются как в химическом, так и в структурном отношении от отдельных мономерных строительных блоков, из которых состоят современные живые организмы. Поэтому геохимическая классификация органических веществ несколько похожа на биохимическую. Но если белки, углеводы и липиды в количественном отношении играют более важную роль среди растений и животных, то фенольные гетероноликонденсаты , углеводороды и асфальты имеют большее значение в геологических материалах. Ниже предлагается схема классификации, включающая основные биогео-химические соединения. [c.158]

    Основными веществами, из которых состоят организмы, являются белки, углеводы и липиды. В высших растениях также содержатся лигнин и высокомолекулярные ароматические соединения. Лигнин состав.ияет около 15—20% от общего количества древесины наземных растений на сухую массу, и по-видимому, может быть главным поставщиком ароматических соединений для нефти. Белки, которые представляют основно источник азота в органических осадках, являются сложными полимерами аминокислот. Целлюлоза — углевод, выполняющий функции основного строительного материала оболочек клеток. Липиды — общий термин для восков, жиров, эфирных масел и пигментов. Большинство пигментов представляют собой чистые углеводороды они могут попадать в нефти, почти не изменяя своего химического состава. С. Силвермэн [58] установил на основании отношений С /С - в нефтях и различных органических материалах, что липиды являются первоначальным источником нефти. Как видно из табл. 2, липиды по химическому составу стоят к нефти ближе всех компонентов. Тел1 не менее, любой из приведенных компонентов, пока еще не сделаны окончательные выводы по этому вопросу, может считаться потенциальным источником УВ. [c.221]

    Сложные белки имеют еще более сложное строение и состоят из макроглобулы простого белка, к которой присоединены другие компоненты углеводы или липиды, фосфорная кислота и т. п. К этой группе относятся также и нуклеопротеиды, строение которых особенно интенсивно изучается в последнее время. Напомним, что нуклеопротеиды состоят из белка и так называемой нуклеиновой кислоты, которая представляет собой полимер, состоящий из мононуклеотидов (мономеров), соединенных между собой сложноэфирными связями. Каждый из [c.427]

    Ненасыщенные гидрофобные компоненты липидов (жирные кислоты, альдегиды, спирты, длинноцепные аминодиолы) обладают геометрической изомерией. Оптическая изомерия свойственна почти всем классам природных липидов. Для производных глицерина она обусловлена наличием асимметрического центра в глицериновой части молекулы, а в ряде случаев присутствием дополнительных асимметрических центров в остатках гидрофильных заместителей (аминокислоты, инозит, углеводы, замещенные производные глицерина и другие). В сфинголипи-дах наблюдается существование эритро- и трео-изомеров. [c.219]

    Главы 6 и 7 посвящены строению, свойствам и биофункциям углеводов и липидов как основных компонентов пищи и соединений, используемых организмами в качестве главного источника энергии и осуществляющих многие другие важнейшие функции в живой природе. Строение и свойства нуклеиновых кислот как носителей наследственной информации рассмотрены в главе 8. В главе 9 обсуждается взаимосвязь химического строения и высокой биологической активности важной группы природных регуляторов — гормонов. [c.34]

    Основным компонентом липидов являются жирные кислоты. Они делятся на насыщенные и ненасыщенные. Насыщенные жирные кислоты (пальмитиновая, стеариновая и др.) используются организмом в целом как энергетический материал. Наибольшее количество насьпценных жирных кислот содержится в животных жирах например, в говяжьем и свином жире — 25 % пальмитиновой, соответственно 20% и 13% стеариновой кислот, в масле сливочном - 7% стеариновой, 25 % пальмитиновой и 8 % миристиновой кислот. Они могут частично синтезироваться в организме из углеводов (и даже из белков). [c.13]

    Так как рецепторы содержат в своем составе как углеводные, так и липидные компоненты, представляется необходимым установить роль углеводов и липидов в проявлении лигандсвязывающих свойств рецептора. Для этого прибегают к отщеплению углеводного компонента с помощью ферментов и (илн) обработке очищенных препаратов рецептора органическими растворителями. Таким путем был установлен существенный вклад олигосахаридов, содержащихся в молекуле рецептора для третьего компонента комплемента (СЗ), в связывании этим рецептором [c.44]

    В известной мере, возможен синтез липидов за счет распадающихся белков. В предыдущем разделе было показано, что при распаде ряда аминокислот образуется ПВК. При ее окислительном декарбоксилировании возникает ацетил-КоА—исходное соединение для синтеза высших жирных кислот, стеролов и других составных частей липидов. ПВК может также превратиться в фосфоглицерин (путем обращения реакций дихотомического распада углеводов)—другой важный компонент липидов. Однако такого рода переход вряд ли широко осуществляется в нормальных условиях жизнедеятельности. [c.471]

    Дж. Хантом и Э. Дегенсом был исследован и.с.у. биологических фракций планктона, отобранного у берегов Перу и Эквадора на глубине 200 м. Для 18 образцов были выделены липиды, пектин, углеводы, сахара, аминокислоты, лигнин и определен их и.с.у. Исследования показали, что и.с.у. одноименных биохимических компонентов образцов планктона не одинаков и связан в некоторых случаях с влиянием температуры. [c.190]

    Строение белка. Различают белки простые и сложные. Простой белок в настоящее время рассматривается как продукт поликонденсации аминокислот , т. е. как природный полимер. Сложные белки состоят из простого белка и небелко-пых компонентов — углеводов, липидов, нуклеиновых кислот и других соединений. [c.337]

    Таким образом, тип захороненного в осадках органического вещества определяется природными сообществами организмов. Во все организмы входят одни и те же соединения — белки, липиды, углеводы, лигнины, алкалоиды и др., которые важны для процессов нефтегазообразованпя. Соотношения отдельных компонентов в наземных и морских растениях различны. Это могло быть одной из причин различного химического состава нефтей. [c.73]

    Неоднородность М. б. связана также со структурными и функцион. различиями наружной и внутр. сторон мембраны, обусловленными неодинаковым распределением отдельных компонентов (белков, липидов, углеводов и др.). Характерный пример асимметрич. распределения липидов - плазматич. мембрана эритроцитов. Холинсодержащие фосфолипиды (фосфатидилхолин и сфингомиелин) преобладают у них на наружной стороне мембраны, а фосфатидилэтаноламин, фосфатидилсерин и фосфатидилинозит связаны преим. с ее внутр. пов-стью, обращенной в сторону цитоплазмы, Сходное распределение фосфолипидов обнаружено в плазматич. мембранах др. животных клеток. [c.30]

    Некоторые углеводы, например целлюлоза и гликоген, устойчивы к кипячению в щелочи, и это позволяет удалить все другие компоненты смеси. Липиды экстрагируют из тканей неполярными растворителями [114], например смесью H I3 и СН3ОН в соотношении 2 1. [c.159]

    Развитие ферментативных процессов при созревании мяса приводит к накоплению в нем веществ, влияющих на вкус и аромат готовых мясных продуктов. Этими соединениями являются продукты распада и пептидов (глютаминовая кислота, треонин, серосодержащие аминокислоты и др.), нуклеотидов (инозинмонофосфорная кислота, инозин, гипоксантин, рибоза), углеводов (глюкоза, фруктоза, молочная, пировиноградная кислоты), липидов (низкомолекулярные жирные кислоты), а также креатин и другие азотистые экстрактивные вещества. Среди летучих компонентов, определяющих аромат продуктов из созревшего мяса, обнаружены жирные кислоты, карбонильные соединения, спирты, эфиры. Существенную роль в формировании запаха играют серосодержащие соединения, предшественниками которых являются цистеин, цистин и метионин. На вкус и аромат мясопродуктов значительно влияют сахароаминные реакции или реакции неферментативного потемнения при тепловой обработке мяса, в которых участвуют редуцирующие сахара, аминокислоты или белки, а также альдегиды, возникающие в результате превращения жирных кислот. [c.1131]

    Другая крупная проблема состоит во взаимодействиях между белками и другими биохимическими компонентами растений, особенно углеводами, липидами и фенольными соединениями, которые очень часто, если не всегда, оказываются связанными с изолированными белками. Каков характер этих связей Когда они образуются Как они разрываются Как они отражаются на физико-химических или питательных свойствах белков Эти вопросы изучаются в НИАИ и университете Бордо. [c.12]

    Оптимизация экстрагирования некоторых компонентов. При меняя вышеописанный метод в экспериментах с обезжиренной мукой из вышелушенных семян рапса, Задерновский (1981), Козловская и Задерновский (1983) измеряли растворимость различных соединений в зависимости от содержания спирта в разных водно-спиртовых смесях. Наиболее эффективными для производства концентрата были самые концентрированные растворы этанола (рис. 9.21) они обеспечивали повышенную растворимость связанных липидов и растворимых углеводов, слабую растворимость азота. В зависимости от содержания глюкозинолатов муки (нормальные или бедные глюкозинолатами сорта рапса), для того чтобы в концентрате оставались лишь следы этих соединений, необходимо 5—6 ярусов экстрагирования. Состав получаемых муки и концентратов представлен в таблице 9.14. [c.408]

    Растительные белки , которые будут рассмотрены в этой главе, имеют значительно более узкий рынок сбыта в весовом отношении, поскольку он измеряется десятками тысяч, а не сотнями миллионов тонн в общемировом масштабе. Эти продукты можно определить как ингредиенты, относительно богатые сырыми белками (обычно свыше 50 % к массе сухого вещества), получаемые из различных растений (в основном из масличных культур, но также из зерновых, люцерны и пр.) с помощью новых промышленных технологий и используемые в разнообразных формах в питании человека, ибо освобождены от возможных антипитательных компонентов, Таким образом, это определение не принимает в расчет всю массу шротов и жмыхов, широко используемых для кормления животных, а также совокупность пищевых продуктов, кулинарных изделий и блюд, традиционно изготовляемых и потребляемых в странах Дальнего Востока, таких, как тофу, шую, мизо и др. Данное определение подчеркивает также важность того факта, что эти технологические процессы проводятся в промышленном масштабе. В самом деле, применительно к двум другим важнейшим компонентам питания липидам и углеводам — индустриальные методы разделения и очистки давно [c.642]


Смотреть страницы где упоминается термин Углеводы как компоненты липидов: [c.339]    [c.582]    [c.67]    [c.121]    [c.19]    [c.18]    [c.414]    [c.252]    [c.326]    [c.1326]   
Биоорганическая химия (1987) -- [ c.532 , c.535 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте