Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция непрерывная

    Применение пылеобразного силикагеля позволяет осуществлять процесс адсорбции аналогично процессам абсорбции непрерывным методом с применением противотока. [c.663]

    Отделение абсорбции непрерывно потребляет очищенный рассол, поэтому аппаратчик систематически контролирует поступление и наличие рассола в напорном баке, а также подачу его в промыватели газа абсорбции и воздуха фильтров. [c.186]


    Отсюда следует, что в зоне абсорбции процесс абсорбции непрерывно подготовляется проходящим там же окислением N0. Скорость окисления N0 находится в зависимости от концентрации кислорода. [c.300]

    Для восполнения расхода аммиака и поддержания в растворе оптимального отношения SO2/NH3 (эфф.), в цикл абсорбции непрерывно вводится аммиачная вода или газообразный аммиак. Избыток образующегося раствора сульфит-бисульфита аммония непрерывно выводится из системы и направляется на дальнейшую переработку, в зависимости от выбранного способа утилизации этого раствора. [c.220]

    Максимум абсорбции соответствует длине волны 290 нм затем абсорбция непрерывно уменьщается до 410 нм. При дальнейшем увеличении длины волны резких изменений в абсорбции не наблюдается в области 350— 360 нм имеется плато. [c.42]

    Стремление к возможно полному извлечению сжиженных газов, значение которых в экономике непрерывно растет, вызывает необходимость проводить абсорбцию при прогрессивно растущих давлениях. При этом количество пропана и бутанов в сыром газовом бензине увеличивается, [c.27]

    Для того чтобы устранить этот недостаток и поддерживать содержание углеводородов в циркулирующем газе на допустимом уровне, можно или непрерывно выводить часть циркуляционного газа из си-/стемы и заменять его свежим водородом, или пропускать циркуляционный газ под рабочим давлением около 250 ат через установку масляной промывки или абсорбции для улавливания углеводородов, хорошо растворяющихся в масле. Использование процесса промывки газа дает значительную экономию водорода по сравнению с первым вариантом- [c.36]

    Современные ректификационные аппараты классифицируются в зависимости от их технологического назначения, давления, способа осуществления контакта между паром и жидкостью и внутреннего устройства, обеспечивающего этот контакт. По технологическому назначению на современных комбинированных установках АВТ ректификационные аппараты делятся на колонны атмосферной перегонки нефти, вакуумной перегонки мазута, стабилизации легких фракций, абсорбции жирных газов переработки нефти, вторичной перегонки широкой бензиновой фракции и др. По проводимому процессу различают следующие ректификационные колонны атмосферные, вакуумные, стабилизаторы и др. В зависимости от давления колонны делятся на вакуумные, атмосферные и работающие под давлением. В качестве контактного устройства в колоннах применяют тарелки. Часто эти колонны именуются тарельчатыми. По способу контакта между паром (газом) и жидкостью все ректификационные аппараты на установках первичной перегонки нефти характеризуются непрерывной подачей обеих фаз. [c.50]


    НОЙ селективностью. Поэтому для более полного разделения газов приходится прибегать к созданию многостадийных установок (каскадов) с промежуточным компримированием и рециркуляцией части потоков, что отрицательно сказывается на технико-экономиче-ских показателях процессов мембранного разделения. Качественно новой концепцией является принцип разделения с использованием установок колонного типа — мембранных колонн непрерывного действия. Следует отметить, что принцип действия таких установок аналогичен работе массообменных аппаратов с непрерывным контактом фаз, широко применяемых в процессах ректификации, экстракции, абсорбции (рис. 6.13) [24]. [c.215]

    Массообменные процессы весьма многообразны. Они отличаются агрегатным состоянием взаимодействующих фаз, характером их движения в аппарате, наличием параллельно протекающих процессов теплообмена. Этим обусловлено большое разнообразие применяемых на практике конструкций массообменных аппаратов. В той или иной степени различаются и методы их расчета. Рассмотрим наиболее распространенные в технике массообменные процессы непрерывные процессы абсорбции и жидкостной экстракции в противоточных аппаратах непрерывную ректификацию бинарных систем периодические процессы с участием неподвижного слоя твердой фазы. [c.42]

    Аппараты, применяемые для массообменных процессов, в частности для абсорбции и экстракции, можно разделить на две группы с непрерывным контактом фаз и со ступенчатым контактом фаз. К первым относятся, например, распылительные и насадочные колонны, ко вторым можно отнести тарельчатые колонны, смесительно-отстойные экстракторы. На рис. 111.1 даны схемы аппаратов обоих типов применительно к абсорбции. [c.42]

    Материальный баланс непрерывного процесса абсорбции можно представить следующей системой уравнений  [c.43]

    Большинство приведенных в этом разделе уравнении написаны применительно к абсорбции. Аналогичные уравнения но с соответствующими обозначениями, можно написать не только для жидкостной экстракции, но и для других процессов осуществляемых по схеме, показанной па рис. I1I.1, т.е. для десорбции, непрерывной адсорбции, конвективной сушки и др [c.43]

    Уравнения внутреннего материального баланса (уравнения рабочих линий) для процесса абсорбции в противоточных аппаратах с непрерывным контактом фаз могут быть представлены в следующем виде  [c.44]

    Процесс получения изопропилового спирта сернокислотным методом основан на абсорбции пропилена 70%-ной серной кислотой в колонном аппарате непрерывного действия, с барбота- [c.225]

    Процесс карбонатной очистки имеет следующие преимущества непрерывность процесса и дешевизна реагента изотермичность (абсорбция и десорбция кислых газов осуществляются при одинаковой температуре, благодаря чему в схеме процесса отсутствуют холодильники) для десорбции поглощенных компонентов из раствора требуется меньше пара, чем в процессе аминовой очистки. [c.279]

    Организовать процессы циклической ректификации и абсорбции можно тремя путями. Наиболее простым является случай непрерывной подачи жидкой фазы (верхнего орошения и сырья), в то время как паровая фаза подается через определенные промежутки времени при этом жидкость по тарелкам движется в отсутствие парового потока. [c.212]

    Как говорилось выше, в промышленном реакторе катализа тор расположен в нескольких адиабатических слоях, между которыми газ охлаждают перед подачей в следующий слой. Это вызвано ограничением конверсии условиями равновесия, а также тем, что имеющиеся катализаторы не могут непрерывно работать в течение длительного времени при температурах ниже 400°С. Некоторое увеличение конверсии может быть достигнуто за счет абсорбции SO3 между слоями катализатора, но это обычно приводит к тому, что стоимость установки возрастает. Катализатор, активный при температуре около 350°С, позволил бы добиться некоторой экономии, устранив промежуточную абсорбцию, но такой низкотемпературный катализатор еще не создан. [c.251]

    В физико-химических процессах, происходящих в гетерогенной системе газ — жидкость, диффузия является физическим этапом, определяющим в большинстве случаев геометрические размеры реакторов. Реакторы для проведения процессов в системе газ — жидкость конструируются, главным образом, по принципу абсорбционных аппаратов, имеют большой объем, но относительно просты и легки в эксплуатации. Промышленные реакторы для систем газ — жидкость являются реакторами непрерывного действия реже используются реакторы полупериодического действия, имеющие непрерывное питание газом. При изучении процессов абсорбции, сопровождающихся химической реакцией (хемосорбция), необходимо одновременно рассматривать уравнения диффузии и химической кинетики, так как общая скорость процесса определяется скоростью перемещения реагентов к месту реакции и скоростью химической реакции. [c.137]


    Узел десорбции газообразного аммиака из водных растворов. Этот узел является вспомогательным и обеспечивает возможность регенерации абсорбированного аммиака из водных растворов и возврата его в систему. Таким образом, установка может работать непрерывно в замкнутом контуре, т. е. в режиме абсорбция — десорбция с минимальными потерями химического сырья [c.226]

    Убытки от наличия этилена в сырье столь велики, что в целях рентабельности работы всей установки совершенно необходимо точно регулировать работу колонны деэтанизации. Этан, этилен и метан во фракции Сз—С4 должны отсутствовать при непрерывном хроматографическом контроле. Даже если углеводороды С2 содержатся в виде следов, это означает, что за сутки через систему пройдет примерно 1 м этилена. Случайное попадание в реактор малых количеств этилена может резко снизить силу кислоты и вызвать прекращение алкилирования, а абсорбция олефинов Сг кислотой способствует ее быстрому разбавлению и протеканию полимеризации олефинов. [c.216]

    В промышленности процессы абсорбции и десорбции обычно осуществляются на одной установке, обеспечивающей непрерывную регенерацию и циркуляцию абсорбента по замкнутому контуру между абсорбером и десорбером (рис. VI-2). Поток газа G ,+, поступает в нижнюю часть абсорбера 1, а сверху подается поток свежего (регенерированного) абсорбента Lq. Непоглощенные компоненты газа G, уходят с верха [c.194]

    Теория проникновения (пенетрационная) предложенная Хигби, базируется на том, что жидкая фаза на границе раздела фаз состоит из небольших элементов, которые непрерывно подводятся за счет конвективного переноса из объема жидкости с концентрацией с 14]. Время существования всех элементарных объемов около границы раздела обозначено дф. При этом абсорбция протекает в условиях нестационарной диффузии с коэффициентом массопереноса [c.38]

    При непрерывной абсорбции одного газа из газовой смеси, которая постоянно обновляется, устанавливается некое равновесие с постоянным градиентом концентрации. Перенос молекул газа осуществляется уже не путем простой диффузии (как в случае покоящегося газа) для восстановления концентрации молекул, удаляемых с поверхности раздела фаз. [c.105]

    Мешок фильтра регулярно очищают путем изменения направления движения потока осевшая на фильтре пыль поступает снова в кипящий слой. В слой непрерывно подается глинозем, по качеству соответствующий глинозему, используемому в электропечах для выплавки алюминия пройдя через псевдоожиженный слой, он выгружается (время пребывания в слое составляет от 2 до 14 ч) и используется для выплавки алюминия. Соотношение оксида алюминия и очищаемого воздуха колеблется в пределах 30—150 1, потеря напора составляет 0,75—1,5 кПа, Эффективность абсорбции газа превышает 99%, тогда как эффективность удаления твердых частиц превышает 90% (таблица X -2). [c.544]

    В 1935 г. Хигби предложил модель гидродинамических условий в жидкой фазе вблизи границы раздела жидкость — газ, которая основана на следующих гипотезах. Поверхность раздела газ — жидкость состоит из небольших элементов жидкости, которые непрерывно подводятся к поверхности из объема жидкости и наоборот уходят в объем за счет движения самой жидкой фазы. Кажды элемент жидкости, пока находится на поверхности, можно рассматривать как неподвижный, а концентрацию растворенного газа в элементе — всюду равной концентрации в объеме жидкости, когда элемент подводится к поверхности. В таких условиях абсорбция осуществляется при нестационарной молекулярной диффузии в различных элементах поверхности жидкости. При рассмотрении [c.16]

    Однако метод отдувки катализатора дымовыми газами имеет следующие недостапги повышается количество балластных газов в жирных газах, что затрудняет абсорбцию фракций Сд и С4 увеличивается нагрузка компрессоров, подаюшцх жирные газы в секцию абсорбции и газофракционирования необходимо непрерывно-контролировать состав инертных газов во избежание поступления кислорода в реактор. Метод продувки катализатора инертными газами не получил распространения на крекинг-установках. [c.153]

    Выделение С4-фракции из контактных газов реакции осуществляется абсорбционным методом с предварительным комприми-рованием контактного газа. Существенный интерес представляет бескомпрессорная схема выделения углеводородной фракции из контактного газа. В этом случае реакцию проводят при повышенном давлении. На рисунке приведена недавно опубликованная принципиальная технологическая схема процесса окислительного дегидрирования н-бутенов, осуществленная на заводе фирмы Филлипс в г. Боргере (США) [28]. Воздух компримируют и смешивают с водяным паром. Смесь нагревают в печи, смешивают с бутеновым сырьем и пропускают над катализатором окислительного дегидрирования, помещенным в реактор непрерывного действия. Тепло выходящего из реактора потока используется в котле-утилизаторе для производства технологического пара. Затем поток подвергается закалочному и обычному охлаждению и промывается от кислородсодержащих соединений. Фракцию С4 выделяют масляной абсорбцией и после отпарки ее из масла в десор-бере подают на конечную стадию очистки. Непрореагировавшие бутены возвращают в реактор. Небольшое количество кислород-содержащих соединений, имеющихся в промывных водах, отпаривают и сжигают в печи подогрева пара и воздуха. [c.691]

    Уравнения, полученные в главах III и V, относятся к процессам, протекающим в диффузионной пленке близ поверхности жидкости. Именно эти процессы и определяют обычно скорость абсорбции. Но диффузионная пленка граничит с основным объемом, или массой жидкости, или органически входит в этот объем (если использовать представления соответственно пленочной модели и моделей обновления поверхности), значит состав массы жидкости является одним из граничных условий, определяющих перенос и химическое взаимодействие в пленке. Однако состав массы жидкости зависит от процесса абсорбции, поэтому целью настоящей главы является исследование взаимосвязи между этим составом и абсорбцией газа в различных случаях. При этом необходимо различать периодические, или беспроточные, и непрерывные, или п р о т о ч -н ы е, процессы абсорбции. В периодических процессах состав массы жидкости в абсорбере постоянно изменяется по мере абсорбции газа. В непрерывных процессах, характеризуемых постоянными и одинаковыми расходами жидкости на входе и выходе из абсорбера, такого изменения состава во времени нет при условии неизменности состава питающих аппарат потоков взаимодействующих в нем жидкости и газа. [c.153]

    Для абсорбции этилена и пропилена серной кислотой применяют аппараты двух типов. Первый из них (рис. 63, а) является горизонтальным абсорбером с мешалкой, на валу которой укреплено большое число дисков. Внутреннее пространство абсорбера примерно на /з заполнено серной кислотой, которая при вращении дисков образует туман, что повышает поверхность контакта фаз. Тепло реакции снимается водой, циркулирующей в рубашке. Этот аппарат работает периодически, но применение каскада из нескольких аб орберов позволяет перейти на непрерывный процесс. [c.189]

    Когда синтезируемый виниловый эфир более летуч, чем исходный реагент (что справедливо для низших спиртов), его непрерывно выводят из реакционного аппарата вместе с остаточным ацетиленом, выделяют конденсацией или абсорбцией и очищают от захваченного спирта ректификацией. При синтезе высококипящих веществ (например, Ы-винилкарбазол) для отвода тепла предусмотрены специальные теплообменные устройства. Продукт реакции остается в жидкой реакционной массе и выделяется из нее методом, зависящим от свойств компонентов. При производстве N винилкapбaзoлa применяют углеводородный (растворитель — метил- или диметилциклогексан, добавляемый к карбазолу в количестве 100% (масс.). Он растворяет Ы-винилкарбазол и извлекает ею из реакционной массы, предотвращая дальнейшие превращения под действием щелочи и ацетилена. Растворитель затем отгоняют, и после ректификации в вакууме получают достаточно чистый М-винилкарбазол. [c.304]

    Непрерывный Прерывистый Реактор пленочный Реактор с насадкой Диспергированная жидкая фаза колонна с орошением Дпспергированная газовая фаза колонна с барботажем Реактор пенный Абсорб1ЩЯ ЗОз серной кислотой Абсорбция N113 раствором кислоты Производство сернокислого аммония Производство монохлорбензола Абсорбция окисей азота в производстве НКОз [c.155]

    В процессе работы в последнем по ходу газа аппарате, куда непрерывно подается вода, концентрация HNOз в растворе устанавливается в пределах 4-6%, что обеспечивает максимум эффективности абсорбции как паров НЙОз, так и оксидов азота. Максимум эффективности третьего по ходу газа абсорбера стал возможным благодаря новому принципу проектирования ступени, в которой предусмотрены распыление жидкости и фильтрация газового потока одновременно. Концентрация HNOз и оксидов азота после стадии абсорбции составляет 0.005-0.1 г/м . Отходящие газы после абсорберов газодувкой 2 нагнетаются в систему каталитической газоочистки, включающую малогабаритную волновую топку нагрева газов 3 и реактор каталитической газоочистки 4. В топке газы нагреваются до 300°С и поступают в реактор, где смешиваются с NHз и проходят через два слоя катализатора. Концентрация оксидов азота после реактора при очистке залповых газовых выбросов составляет 0.01-0.02% об., а при очистке технологических выбросов — в пределах 0.003-0.008% об. Концентрация НКОз в отходящих газах практически равна нулю. Горячие очищенные отходящие газы процесса каталитической очистки направляются в топку 7 и используются в процессе концентрирования 70%-ной Н2804. При этом относительно дорогой способ каталитической газоочистки становится в новой технологии не только самым надежным, но и самым дешевым, ибо энергетические затраты на его проведение полностью могут быть отнесены к последующему процессу концентрирования серной кислоты. [c.329]

    Перемещивание широко применяется в химической промышленности для приготовления суспензий, эмульсий и растворов. Посредством перемешивания достигается тесное соприкосновение частиц и непрерывное обновление поверхности взаимодействия веществ. Вследствие этого при перемешивании значительно ускоряются процессы массообмена, например растворение твердых веществ в жидкостях, процессы теплообмена и лротекаиие многих химических реакций. Перемешивание используют для ускорения абсорбции, выпаривания и других основных процессов химической технологии. [c.346]

    Житинкин А. А. Разработка и исследование роторного пленочного аппарата для непрерывной абсорбции углекислого газа поливинилхлоридной пастой. Автореф. канд. дисс., ЛТИ им. Ленсовета, 1970. 22 с. [c.208]

    ИК-абсорбция позволяет получить абсолютное 31начение объемной концентрации табулированных веществ для конкретного серийного прибора, который может работать в непрерывном режиме. Ниже приведены абсолютные значения отклонений прибора при максимальной его чуоствительноста  [c.79]

    Золи с металлическими частицами очень сильно поглощают свет, что обусловлено генерацией в частицах электрического тока, большая часть энергии которого превращается в теплоту. Установлено, что для золей металлов характерна селективность поглощения, зависящая от дисперсности. С ростом дисперсности максимум поглощения сдвигается в сторону коротких волн. Эффект влияния дисперсности связан с изменением как спектра поглощения, так и спектра рассеяния (фиктивного поглощения). Например, золи золота, радиус частиц которых составляет около 20 нм, поглощают зеленую часть спектра ( 530 им), н поэтому они имеют ярко-красный цвет, прн радиусе же частиц 40—50 нм максимум поглощения приходится на желтую часть спектра ( 590—600 нм) и золь кажется синим. Интересно, что очень высокодисперсный золь золота, поглощая синюю часть спектра ( 440—450 нм), имеет желтую окраску, как и истинный раствор соли, например, хлорида золота АиС1з. Кривые световой абсорбции золей серы по мере увеличения днсиерсности также постепенно передвигаются к кривой абсорбции молек /ляриых растворов серы. Это подтверждает наличие непрерывного перехода некоторых свойств от дисперсных систем к истинным растворам. Подобное изменение окраски в зависимости от дисперсности можно наблюдать у ряда других золей. [c.266]


Смотреть страницы где упоминается термин Абсорбция непрерывная: [c.362]    [c.98]    [c.147]    [c.173]    [c.140]    [c.255]    [c.170]    [c.238]    [c.293]    [c.77]    [c.47]   
Основы процессов химической технологии (1967) -- [ c.568 ]

Органическая химия Том 1 (1963) -- [ c.99 ]

Органическая химия Том 1 (1962) -- [ c.99 ]




ПОИСК







© 2024 chem21.info Реклама на сайте