Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция термодинамика

    Уравнение изотермы адсорбции Гиббса с точки зрения термодинамики универсально и применимо к границам раздела любых фаз. Однако область практического использования уравнения для определения величины адсорбции ограничена системами, у которых доступно экспериментальное измерение поверхностного натяжения, т. е. системами жидкость — газ и жидкость — жидкость. Рассчитанные по этому уравнению значения Г наиболее близко совпадают со значениями, найденными другими методами, в области разбавленных растворов. [c.331]


    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]


    Химическая термодинамика. На основе законов термодинамики осуществляются энергетические расчеты химических реакций и химического равновесия, а также определяется возможность и направление самопроизвольного течения того или иного химического процесса. Химическая термодинамика изучает фазовые переходы (растворение, испарение, кристаллизацию и др.), адсорбцию и т. п. Важным разделом химической термодинамики является термохимия, которая изучает тепловые эффекты химических реакций. Этот раздел физической химии имеет большое значение в народном хозяйстве, особенно в области промышленного синтеза. [c.6]

    Первый том Курса физической химии включает термодинамику и ее приложения. Главы, посвященные основам термодинамики, термодинамике растворов и химической термодинамике, написаны Я. И. Герасимовым раздел Гетерогенные равновесия — В. П. Древингом раздел Поверхностные явления и адсорбция и дополнение Газовая хроматография —А. В. Киселевым. [c.9]

    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и предельное значение адсорбции (Г ), константа скорости химического акта (/гуд), а также константы, характеризующие процессы массопереноса (О, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость и куц от строения и свойств катализатора и реагирующих молекул. Проблема эта очень сложная и далеко еще не решенная. [c.654]

    Книга является первым томом учебного пособия Курс физической химии . В этом томе излагаются основы химической термодинамики, термодинамика растворов, учение о химическом и гетерогенном равновесиях, учение о поверхностных явлениях и адсорбции. [c.2]

    По хроматографическим данным возможно также определение теплоты адсорбции. Из термодинамики известно, что [c.67]

    На основании положений химической термодинамики равновесные соотношения при адсорбции выражаются следующим образом [c.385]

    В 1876 г. Гиббс на основании второго закона термодинамики вывел уравнение уравнение изотермы адсорбции Гиббса), описывающее адсорбцию на однородной поверхности  [c.121]

    Газо-хроматографический метод имеет еще и то преимущество, что с его помощью гораздо легче исследовать термодинамику адсорбции в широком интервале температур. [c.592]

    Результаты многочисленных работ по статической усталости и по кинетике роста трещин часто обсуждаются в терминах коррозии под напряжением . Если под коррозией понимать растворение с переходом атомов твердой фазы в объем раствора, то такой процесс действительно иногда вносит существенный вклад в общую картину [297]. Однако чаще всего судьба атомов, образовавших связь, после ее гидролитического расщепления несущественна. В ряде случаев можно утверждать, что они остаются на месте, так как активная среда не образует жидкой фазы, а присутствует в виде адсорбционного слоя [268]. Однако даже если они переходят в раствор (может быть, с переотложением в другом месте, если раствор насыщенный), то мерой действия среды все равно может служить работа адсорбции, хемосорбции или топохимической реакции, т. е. термодинамика поверхностных взаимодействий. [c.97]

    М. В. Ломоносов правильно объяснил природу теплоты, сформулировал закон сохранения, изучал растворы и их свойства. На развитие физической химии и термодинамики оказали влияние работы Ловица Т. Е., К- Шееле (1773) и Фонтане (1777) в области адсорбции из растворов и газовой среды, работы Ф. Рауля и Я. Вант-Гоффа в области изучения свойств растворов. Значительное влияние на изучение свойств растворов оказали работы Д. И. Менделеева. [c.13]

    Адсорбционный коэффициент Ь = к,/к = К равен константе равновесия адсорбции и дня него справедливы известные формулы термодинамики  [c.176]

    В книге изложены основы расчета процессов перемещения жидкостей и газов, теплообмена, массообмена (ректификация, экстракция, абсорбция, адсорбция, сушка) и других процессов, применяемых на нефтеперерабатывающих заводах. Приводятся краткие сведения по термодинамике, гидравлике, теплопередаче и т. д., необходимые для расчетов. [c.2]

    Как известно, теплота адсорбции какого-либо компонента на твердом адсорбенте всегда положительна [216]. Поэтому в соответствии с требованиями термодинамики при физической адсорбции количество адсорбированного вещества при постоянном давлении должно уменьшаться с увеличением температуры. Скорость процесса адсорбции в основном определяется скоростью диффузии молекул адсорбируемого вещества в поры адсорбента [217]. [c.288]


    Подчеркивается доминирующая роль поверхностных явлений в дисперсных системах с высокоразвитой границей раздела фаз. Достаточно доступно излагается термодинамика гетерогенных систем по методу избытков термодинамических функций Гиббса. Важное место занимает раздел, в котором ставится вопрос о нетривиально-сти термодинамического описания микрогетерогенных систем, не являющихся в принципе равновесными, и о природе их устойчивости, с выделением роли флуктуаций, лиофилизации в результате адсорбции (по Ребиндеру), специфики поведения тонких слоев и проявления расклинивающего давления. [c.5]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    Химическая термодинамика изучает превращения различных видов энергии при химических реакциях, процессах растворения, испарения, кристаллизации, адсорбции, а также возможности и предел самопроизвольного протекания химического процесса в конкретных условиях. [c.76]

    Из всех перечисленных выше сорбционных явлений наибольшее значение для практики имеет адсорбция. Всякая поверхность независимо от агрегатного состояния разделяемых ею веществ обладает некоторым запасом свободной энергии. В силу второго начала термодинамики поверхность раздела веществ стремится к самопроизвольному уменьшению этой энергии. Это стремление и [c.197]

    Термодинамика включает следующие разделы общую или физическую термодинамику, изучающую наиболее общие законы превращения энергии техническую термодинамику, рассматривающую взаимопревращения теплоты и механической работы в тепловых машинах химическую термодинамику, предметом которой являются превращения различных видов энергии при химических реакциях, процессах растворения, испарения, кристаллизации, адсорбции. [c.47]

    Для каждой пары адсорбент — адсорбтив характеристическая кривая устанавливается по определяемой экспериментально изотерме адсорбции. Адсорбционный потенциал вычисляется как работа, совершаемая адсорбционными силами при перемещении одного моля газа из пространства вне адсорбционного объема в данную точку адсорбционного объема. Как известно из курса термодинамики, при условии изотермичности процесса такая работа равна [c.65]

    Как известно, всякая поверхность, независимо от агрегатного состояния разделяемых ею веществ, обладает некоторым запасом свободной энергии. В силу второго начала термодинамики поверхность раздела веществ (как и любая система, обладающая запасом свободной энергии) стремится к самопроизвольному уменьшению этой энергии. Это стремление и является прямой или косвенной причиной разнообразных физических явлений, в том числе и адсорбции. [c.344]

    ТЕРМОДИНАМИКА (химическая) -наука, изучающая переход энергии из одной формы в другую и от одной системы к другой в различных химических процессах, фазовых превращениях, адсорбции и др. [c.247]

    Процесс адсорбции идет в сторону уменьшения свободной энергии поверхности о. Этот процесс, обусловленный молекулярными силами, создает градиент концентрации у поверхности и в предельном случае приводит к заполнению поверхностного слоя тем компонентом, который обладает наименьшим значением а. Наоборот, тепловое движение молекул стремится восстановить равенство концентраций в объеме и в поверхностном слое. Равновесие устанавливается тогда, когда процесс адсорбции, приводящий к увеличению концентрации, компенсируется процессом диффузии из поверхностного слоя вглубь раствора. Это состояние равновесия, отвечающее минимуму свободной энергии всей системы, описывается уравнением адсорбции Гиббса, являющимся следствием второго начала термодинамики. [c.88]

    Эта книга отличается прежде всего строгим и всесторонним изложением современных представлений о строении границы раздела электрод — раствор. В ней рассмотрены новые важные проблемы (например, термодинамика поверхностных явлений на металлах, адсорбирующих водород и кислород, современное понятие о заряде электрода, теория адсорбции органических соединений на электродах), которые еще не были отражены в учебной литературе. [c.3]

    Говоря об адсорбции органических веществ на электродах, целесообразно выделить системы с обратимой и необратимой адсорбцией. Для первых систем характерно сравнительно слабое ( физическое ) взаимодействие молекул адсорбата с электродом (как правило, это з, р-металлы Н , РЬ, Т1, 1п, Зп, В1 и др.). Адсорбция в этих системах подчиняется законам термодинамики, а поверхностную концентрацию адсорбата можно однозначно связать с его объемной концентрацией уравнением изотермы адсорбции. Для систем с необратимой адсорбцией характерно очень сильное ( химическое ) взаимодействие органических молекул с поверхностью электрода, которое нередко сопровождается деструкцией этих молекул, например разрывом связей С—Н и С—С. Такая хемосорбция органических веществ происходит, как правило, на электродах из переходных, или /-металлов, из которых наиболее полно изучены металлы платиновой группы и прежде всего сама платина. Понятия адсорбционного равновесия и изотермы адсорбции к этим системам не применимы. В самом деле, электрод с необратимо адсорбированным на нем органическим веществом можно извлечь из раствора, промыть водой и погрузить в раствор электролита, но без органического вещества при этом количество хемосорбированного вещества на электроде остается [c.4]

    Продумайте, как поставить эксперименты, чтобы можно было судить о влиянии природы газа и поглотителя на адсорбцию. Объясните причины, почему некоторые газы лучше поглощаются одними веществами и хул<е — другими. В объяснении используйте представления теории строения вещества, химической термодинамики и кинетики. [c.436]

    Согласно второму принципу термодинамики, в системах, обладающих избытком энергии, могут идти самопроизвольные процессы, обусловливающие притяжение к поверхности зародыша из дисперсионной среды соответствующих соединений. В результате этого в нефтяной системе происходит перераспределение соединений между дисперсной фазой и дисперсионной средой. Таким образом, на поверхности зародыша происходит концентрация определенных тггпов соединений, т. е. наблюдается адсорбция. [c.77]

    Для вскрытия сущности этих взаимосвязей потребовалось привлечение ранее выполненных работ К. Шееле, Д. Фонтаны, Т. Е. Ловица по адсорбции, Дж. Гиббса (1880) по термодинамике поверхностных явлений, П, Лапласа (1806), Т, Юнга (1855), 15. Кельвина — Томсона (1871) по капиллярным явлениям, Ф. Ф. Рейсса (1808), Г. Квинке (1859), X. Гельмгольца, Г. Липпмана (1870—1880) ио элек-троповерхностным явлениям и др. [c.17]

    Как было указано вьине, в результате адсорбции происходит перераспределение компонентов между объемными фазами и поверхностным слоем, что влечет за собой изменение их химических потенциалов в системе, поэтому этот процесс можно рассматривать как превращение поверхностной энергии в химическую. Выведем соотношение между иоверхиостР ым натяжением и химическими потенциалами компонентов системы. Объединенное уравнение первого и второго начал термодинамики для внутренней энергии поверхности с учетом поверхностной и химической энергии имеет вид (объем поверхности равен нулю) [c.35]

    Существует целый ряд теорий, преследующих цель объяснить вышеуказанное явление. Но авторы настоящего труда считают излишним рассматривать их в этом месте. Общее мнение сводится, очевидно, к тому, что в действительности гистерезис представляет собой явление механического свойства. Наблюдаемое при адсорбции разбухание не связано целиком с десорбцией, вследствие чего водяному пару открыт доступ к более значительной площади поверхности. Баркас (см. ссылку 186) объясняет это обстоятельство с точки зрения термодинамики. В своих рассуждениях он прибегает к обосноваийям, на которых построены известный цикл Карно и другие циклические процессы. [c.216]

    Поскольку поверхностная энергия в силу второго начала термодинамики стремится к минимуму, то в случае, когда растворение вещества понижает поверхностное натяжение растворителя, концентрация растворенного вещества в поверхностном слое должна быть больше, чем в объеме раствора. И наоборот, когда растворение повышает поверхностное натяжение, поверхностный слой раствора до жен быть беднее растворенным веществом по сравнению с общим сто объемом. Таким образом, на границе раздела жид- кость — газ наблюдается явление уменьшения и.ли увеличения кон- центраци, растворенного вещества, т. е. явление адсорбции. [c.353]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Грот-гус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVIII в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас — во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон— в Англии, середина XIX в.) и последующее развитие тер-модинамического учения о химическом равновесии (К. Гуль-берг и П. Вааге —в Норвегии, Гиббс —в США). [c.7]

    Если говорить о дальнейшем развитии наших представлений в области строения двойного электрического слоя, то следует указать, что после теорий Гуи и Штерна, каких-либо общих теорий подобного масштаба не появлялось, хотя и были попытки построения отдельных аспектов теории двойного слоя с использованием методов термодинамики необрати-мых процессов и статистики. Предлагались некоторые уточнения картины строения двойного слоя, представленной Штерном. Так, например, Грэм предложил провести подразделе- ние внутренней части двойного слоя для слу- чая, когда имеет место специфическая адсорб- ция наряду с адсорбцией ионов за счет электростатических сил. Такое подразделение приводит к тому, что выделяется отдельно плоскость, проходящая через центры специфически адсорбированных ионов, со значением потенциала и плоскость, проходящая через центры неспецифически адсорбированных ионов, со значением потенциала г зв. Это позволяет уточнить величину поправки на объем ионов, входящих в двойной слой, что не учитывалось классическими теориями. Схема строения двойного электрического слоя, согласно Штерну и Грэму, а именно, его внутренней части (гельмгольцевский слой), приведена на рис. 23. [c.45]

    Адсорбция самопроизвольна и протекает при р = onst со снижением энергии Гиббса, а при v = onst со снижением энергии Гельмгольца. При этом, однако, происходит не выравнивание концентраций по всему объему системы, а, напротив, увеличение разности концентраций между газовой фазой (раствором) и поверхностью. Одновременно при переходе вещества из газовой фазы на поверхность уменьшается подвижность сорбирующихся молекул. Оба эти фактора приводят к уменьшению энтропии (AS < 0). По основному уравнению термодинамики (1.13.24) [c.210]

    Теплота адсорбции газа на 1вердом адсорбенте всегда положительна. Поэтому в соответствии с требованиями термодинамики [c.296]


Смотреть страницы где упоминается термин Адсорбция термодинамика: [c.2]    [c.37]    [c.219]    [c.220]    [c.34]    [c.39]    [c.63]    [c.225]   
Физическая химия поверхностей (1979) -- [ c.472 , c.481 , c.491 ]

Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.43 , c.49 ]

Справочник по физико-техническим основам криогенетики Издание 3 (1985) -- [ c.52 , c.53 ]




ПОИСК







© 2025 chem21.info Реклама на сайте