Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление контактное катализаторы

    Основные стадии процесса следующие получение диоксида серы в результате сжигания в топке сероводородного газа охлаждение полученного диоксида углерода в котле-утилизаторе с получением водяного пара окисление диоксида серы до триоксида в контактном аппарате, загруженном ванадиевым катализатором конденсация триоксида серы и паров воды с образованием серной кислоты улавливание тумана и капель серной кислоты в электрофильтре. Технологическая схема установки представлена на рис. ХП-5. [c.113]


    Наиболее полно производство контактной серной кислоты отражает технологическая схема, в которой исходным сырьем служит колчедан (классическая схема) (рис. 34). Эта схема включает четыре основные стадии 1) получение сернистого ангидрида, 2) очистка газа, содержащего сернистый ангидрид, от примесей, 3) окисление (на катализаторе) сернистого ангидрида до серного, 4) абсорбция серного ангидрида. [c.89]

    Окисление проводят при 320—ЗЬ0°С, давлении 0,8—1 МПа в присутствии контактного катализатора — окиси меди (I), нанесенной на карбид кремния или пемзу. [c.284]

    Рассчитать диаметр сетки Pt/Rh катализатора для контактного аппарата, обеспечивающего получение азотной кислоты 82 т в сутки. Степень превращения аммиака в N0 0,96, а степень абсорбции NOa 0,98. Окисление аммиака происходит при давлении 10 Па. Напряженность катализатора 605 кг/м в сутки. Используется смесь с объемной долей аммиака 0,112%. Активная поверхность [c.168]

    Широкое применение платиновые металлы находят в качестве катализаторов. Так, способность платины сорбировать кислород позволяет использовать ее в качестве катализатора процессов окисления (контактный способ производства серной кислоты, каталитическое окисление аммиака и т. п.). Сродство палладия к водороду обеспечивает его каталитическую активность при разнообразных реакциях гидрирования. Значительные количества платины и палладия используются для изготовления ювелирных изделий. Платиновые металлы наряду с золотом и серебром служат в качестве валютных активов. [c.427]

    Например, в производстве серной кислоты контактным способом дается устройство контактного аппарата, в котором осуществляется окисление на катализаторе оксида серы (IV) в оксид серы (VI) такого рода устройства находят применение в ряде химических производств. А при описании очистки газов, поступающих на катализатор, изучается устройство электрофильтров, в принципе работы которых используются физические процессы. [c.284]

    Введение. Известно, что реакция (6. 1), которая в промышленных условиях обычно проводится с применением контактного катализатора, может быть осуществлена с использованием различных форм радиационной и электрической энергии. Показано также, что подводимая энергия любого вида служит не для того, чтобы энергетически обеспечить эту реакцию окисления, которая сама экзотермична, а для того, чтобы перевести SO2 в возбужденное состояние, в котором SO3 легко реагирует с кислородом. [c.258]


    Поэтому для поддержания в контактном аппарате нужной температуры не требуется затрачивать топлива, т. е. процесс окисления на катализаторе сернистого ангидрида до серного автотермичен. [c.7]

    Так, например, в одном из производств формалина при направлении ветра со . тороны ТЭЦ было отмечено значительное снижение выхода формальдегида при контактно-каталитическом процессе его получения из метанола окислением воздухом. В данном случае фактором, замедляющим реакцию, оказался тоже сернистый ангидрид, содержащийся в дымовых газах ТЭЦ, который, попадая с атмосферным воздухом, подаваемым воздуходувками в систему контактирования, отравлял катализатор. [c.168]

    Термохимический анализатор основан на измерении теплового эффекта реакции окисления на катализаторе водорода, получаемого в специальном контактном электролизере воды. Тепловой эффект реакции, измеряемый термопарами, пропорционален содержанию кислорода в анализируемом газе. [c.356]

    При приготовлении смешанных контактных катализаторов недостаточно простого смешивания обоих компонентов. Большей частью необходим тесный конгломерат из зернышек обоих или даже внедрение одного в кристаллическую решетку другого, что достигается окислением или восстановлением смеси солей и другими способами. [c.459]

    Окислительно-восстановительные процессы а) окисление аммиака (катализаторы Р1/3102, Р АШз и др.) б) окисление ЗОа в 80з контактным методом (катализаторы Р1 и Р<1 на 8102 и на АЬОз)  [c.109]

    В промышленных условиях проведения процесса конверсии углеводородных газов в случае нарушения нормального технологического режима или при остановке и пуске контактных аппаратов возможно окисление никелевых катализаторов водяным паром или кислородом. [c.67]

    В. С. Б е с к о в, Я. М. Б у ж д а н, М. Г. С л и н ь к о, Расчет контактных аппаратов с адиабатическими слоями катализатора для окисления двуокиси серы. Хим. пром., Ali 10, 721 (1963). [c.252]

    При температуре ниже 400 °С степень окисления диоксида серы близка к 100 %, однако при этом скорость реакции даже в присутствии катализатора очень мала. Температура, при которой начинается каталитическая реакция окисления диоксида серы в триоксид, это — температура зажигания контактной массы (для данного катализатора составляет 440 °С) при меньшей температуре активность катализатора резко падает. С увеличением кислорода в газе температура зажигания несколько снижается. В связи с обогащением газа кислородом по мере прохождения слоев катализатора (за счет подачи воздуха на охлаждение) температура газа на входе в IV слой может быть снижена до 425 °С. Максимальная температура газа на выходе из слоя контактной массы не должна превышать 580—600 °С во избежание спекания массы и потери ее активности. [c.114]

    Петров И. М., К у 3 н е ц о в а Л. Ф., Статистические характеристики и устойчивость процесса окисления SO2 в контактных аппаратах с неподвижными адиабатическими слоями катализатора и промежуточными теплообменниками, Хим. пром., № И, 29 (1969). [c.186]

    К аппаратуре для контактно-каталитических и термических процессов в газовой фазе относят аппараты для процессов каталитического окисления, гидрирования, хлорирования и ряда других газовых реакций, идущих в присутствии катализатора. Контактные аппараты делят на аппараты с неподвижным и движущимся слоем катализатора. Аппараты с неподвижным слоем, в свою оче-ред >, подразделяются на адиабатные н аппараты с теплообменом. [c.202]

    Выжигание кокса в промышленных аппаратах осуществляется и в движущемся слое контактного материала. Такой способ регенерации используется для восстановления активности быстро отравляющихся катализаторов и для ввода тепла в тех случаях, когда осуществляемый химический контактный процесс сильно эндотермичен. Например, для процессов глубокого разложения углеводородов, протекающего при высоких температурах, необходимо большое количество тепла, ввод которого может быть осуществлен путем подачи в реактор потока контактного материала, нагретого за счет окисления отложившегося на его поверхности кокса. [c.322]

    Высота слоя катализатора в емкостном контактном аппарате определяется кинетическими параметрами процесса с учетом гидродинамики потока. Наиболее тонкий слой становится двумерным и может заменяться сеткой из каталитического материала. Это имеет место при проведении весьма быстрых реакций во внешнедиффузионной области, например при окислении аммиака до окислов азота. [c.265]

    Анализ контактного газа показал, что остаточная объемная концентрация кислорода не превышала 0,0004 %, что соответствует степени связывания кислорода 99,9 %. Учитывая, что алюмооксидный катализатор не проявляет активности в реакции прямого окисления сероводорода кислородом при этих температурах, можно считать, что эффект столь значительного снижения содержания кислорода в газе и сохранения высокой активности алюмооксидного катализатора в процессе Клауса поручен благодаря применению в качестве протектора катализатора KS-I. [c.171]


    А. Н. Башкиров и Я. Б. Чертков [П9] показали, что окисление контактного парафина, иолученного в процесса Фишера—Тропша (температура плавления 95—100°, средний молекулярный вес 1007, что соответствует формуле С70Н140), происходит с относительно большими выходами низших кислот, чем окисление чистого эйкозана (Витцель) или тетракозана (Янтцен). Окисление проводили при 115—120° в присутствии 0,2% перманганата калия как катализатора до содержания кислот в оксидате около 56%. [c.586]

    Пример. Определить основные размеры контактного аппарата для окисления аммиака под давлением 7,5 атм, производительностью по HNO3 2,5 ш1ч. Степень окисления NH3 в N0 96% степень абсорбции 99%. Содержание аммиака в газе, поступающем на окисление, 11%. Катализатор — платино-родиевая сетка d = 0,009 см w. п = = 1024. Процесс осуществляется при 900° С. [c.241]

    Вычислить интенсивность контактного аппарата для окисления аммиака платинового катализатора, производительность которого для систем ,] при давлении 1,013-10 Па и диаметре сетки 2,8 м равна 800 кг/м, а при давлении 7-10 Па и диаметре сетки 1,6 м — 4ПП0 кг/ч. Во сколько раз возрастет интенсивность при повьииеиии давления  [c.167]

    Испарение метанола в токе возду ха производится при 68—80 °С. Во избежание конденсации паров метанола из смеси последняя из испарителя 4 поступает в перегреватель 5, где нагревается до 100— 120 °С. Смесь паров через огнепреградитель 6 направляется на окисление в контактный аппарат 7, на решетке которого находится слой катализатора. Окисление метанола проводится при 600—750 С. Ввиду экзотермичности процесса теплоту, выде-ляющ,уюся при реакции, необходимо быстро отводить, поэтому полученный в результате окисления контактный газ поступает в холодильник, установленный непосредственно под сеткой с катализатором. При пуске установки для инициирования реакции используется электрозапал, устанавливаемый в слое катализатора. [c.77]

    Опытами целого ряда химиков давно установлено, что аммиак под действием воздуха при высокой температуре окисляется в азотную кислоту. Фуркруа еще в 1800 году, проводя через раскаленную трубку смесь аммиака с воздухом, получал азотную кислоту. Кюльман позже (в 1839 г.) применил для этого окисления платиновый катализатор и думал уже о технической утилизации контактного окисления аммиака в азотную кислоту. Потом другими химиками были использованы различные способы, сводившиеся к прямому окислению аммиака кислородом и озоном при высокой температуре и окислению с помощью воздуха в присутствии различных катализаторов платины, меди, никкеля, окиси железа, (Шенбейн, Либих), манганата и хромата свинца. Были произведены также опыгы с целью окисления аммиака с помощью перекисей натрия, бария и свинца. [c.126]

    Это типичный случай большинства простых реакций, протекающих в растворах. Если же реакция происходит только на поверхности между двумя фазами, то говорят, что такая реакция гетерогенна. Имеется очень много примеров реакций этого типа среди них можно отметить контактный процесс окисления ЗОг кислородом на поверхности платино-асбестового катализатора и гидрогенизацию ненасыщенных соединений в жидких суспен-гшях никелевого катализатора Ренея (N 02). Кроме этих двух категорий реакций, имеется группа реакций, так называемых цепных процессов, скорость которых может зависеть не только от химического состава, но также от размера и геометрии поверхности, ограничивающей реагирующую систему. Хотя такие реакции классифицировались как гетерогенные, это определение не точное, поскольку реакция не ограничивается поверхностными слоями скорее всего поверхность лишь способствует процессам, происходящим в объеме газовой фазы или изменяет их. Типичными примерами таких реакций являются цепное окисление водорода, окиси углерода, углеводородов и фосфора. Большинство изученных газофазных реакций относится к этой категории. [c.17]

    Окислительно-восстановительные процессы а) окисление аммиака (катализаторы Р1/5 02, Р1/А120з и др.) б) окисление 50г в 50з контактным методом (катализаторы Р1 и Рё на 5102 и на АЬОз). [c.189]

    Известны случаи использования в качестве катализатора восстановленной пироксидной руды, содержащей около 92% МпОг и примеси Si02, aO, MgO и др. [29]. Руда восстанавливалась в токе азото-водородной омеси или чистого водорода при температуре 350° С до образования МпО. При стехиометрическом соотношении кислорода и водорода, объемных скоростях до 1400 и температуре 250—350° С часть кислорода гидрируется, а часть связывается с контактной массой, вследствие чего в очищенном газе будет содержаться водород. Присоединяя кислород, контактная масса меняет активность и цвет, который с зеленовато-серого становится светло-коричневым. Каталитическое действие массы прекращается при насыщении кислородом, соответствующем формуле МпО,, 15. Скорость окисления руды увеличивается с возрастанием объемной скорости, если даже содержание кислорода в смеси уменьшается. Зависимость высоты окисленного слоя катализатора Я от времени контакта т выражается уравнением [c.113]

    Жидкостно-контактный метод. Основан на окислении дноксида серы в жидкой фазе на поверхности катализатора, например активного угля. По мере увеличения концентрации серной [c.61]

    В качестве характерной конструкции контактного аппарата с катализатором, загруженным в трубках, приведен аппарат для каталитического окисления нафталина или ортоксилола во фталевый ангидрид нри температуре 400—430°С [23]. Реакция окисления нафталина идет с больншм выделением теплоты и в то же время требует тонкого регулирования температуры отклонение температуры от оптимальной на 4—6°С уже вызывает существенное нарушение процесса. Указанное обстоятельство и определило конструкцию аппарата. Он представляет собой теплообменную трубчатку с трубками малого диаметра 30x2 мм, в которые загружается катализатор. В межтрубном пространстве циркулирует промежуточный теплоноситель — расплав солей (смесь нитрата и нитрита натрия). Применение жидкого теплоносителя позволяет вести процесс в очень мягком температурном реж41ме — разность температур между теплоносителем и реакционной зоной не превышает б—8°. [c.209]

    Газ вводится в контактный аппарат сверху и через распределительные решетки и смесители последовательно проходит четыре слоя контактной массы. Для снятия тепла, выделяемого при окислении диоксида серы, воздуходувкой 4 через пневмозаслонки регуляторов температуры в контактный аппарат (на вход и перед каждым слоем катализатора) подается холодный воздух. Из аппарата 3 газ поступает под колосниковую решетку в нижнюю часть башни-конденсатора 7. На верх башни насосом 15 в качестве орошения подается холодная серная кислота, которая вводится из напорного бачка 8 через устройства, равномерно распределяющие кислоту по сечению башни-конденсатора. Сконденсированная в башне серная кислота через холодильник 6 выводится в сборник 14, откуда балансовый избыток кислоты отводится в резервуары готовой продукции. [c.113]

    Лэлагодаря правильной организации теплообмена в промышленных реакторах синтеза аммиака на выходе из аппаратов достигается концентрация аммиака от 13 до 15% при давлении 300 ат. Это значительно выше, чем возможно при адиабатическом процессе, даже в случае равновесия. Аналогично организован процесс окисления двуокиси серы (см. рис. Х1-9)г температура регулируется при помощи внутреннего или внешнего теплообмена (рис. Х1-10). В настоящее время окисление ЗОа проводят в многослойных контактных аппаратах с промежуточным охлаждением между слоями катализатора.—Дсп. ред.] [c.362]

    Бесков Г. К., С л и н ь к о Л 1. Г., Б е с к о в В. С., Количество катализатора, устойчивость п параметрическая чувствительность в контактных аппаратах окисления двуокпсп серы. Хим. пром., № 3, 13 (1968). [c.183]

    Рассмотрены вопросы устойчивости и автотермичности реакторов, расчета оптимальных режимов. В качестве примеров для изучения взяты реакторы с неподвижным слоем, прежде всего реакторы для синтеза аммиака и окисления двуокиси серы, играющие наиболее важную роль в химической промышленности. Приведены также расчеты реакторов с псевдоожиженным слоем (основы теории псевдоожил ення являются предметом ряда специальных монографий и здесь не излагаются). Из контактных аппаратов других типов приведены колонны Кёлбела с катализатором, суспендированным в жидкости. В книге не рассматривались реакции, осуществляющиеся в жидкой фазе с взвешенным в ней катализатором. В конце книги кратко излагаются вопросы оптимизации реакторов, а также применения электронно-вычислительных и аналоговых машин. [c.10]

    Простые системы — все признаки при распознавании однотипны (например, масса). Сложные системы — в качестве признаков могут использоваться различные физические и химические свойства, результаты прямых и косвенных измерений. Сложные системы наиболее типичны для прикладных исследований в каталитических процессах. Например, в [2] для решения задачи прогнозирования многокомпонентных катализаторов использовались экспериментальные данные пассивных опытов по определению селективности на основе смеси УзО, и М0О3 (в реакции парофазного контактного окисления 2,6-диметилииридина). В качестве признаков были выбраны 20 разнотипных характеристик. В их число вошли отношение радиуса атома металла к радиусу атома кислорода в твердом оксиде, плотность оксида, цветность оксида по трехбальной шкале, отношение кристаллических пустот к собственному объему молекулы оксида в кристаллической структуре, зонный фактор (расчетная величина), мольная магнитная восприимчивость твердого оксида и т. п. Сложные системы в зависимости от способа получения информации можно подразделять на одноуровневые и многоуровневые. [c.80]

    На основании результатов проведенного анализа был сделан вывод о возможности улучшения характеристик исследуемой системы путем добавления еще одного слоя контактной массы и иерерасиределения количества катализатора на нолках реактора окисления сернистого ангидрида. Использование СКДИ ADAR существенно помогло в решении и этой задачи, поскольку система обладает широкими возможностями отображения информации и вывода ее на различные устройства ЭВМ (начиная от просмотра резу.т1ьтатов в темпе счета на экране видеотерминала ( динамический вывод) и кончая получением твердой копии на печатающем устройстве), а также предоставляет исследователю возможность активного вмешательства в процесс расчета. [c.277]

    Расчеты показывают, что неравномерные распределения скорости потока приводят к отклонению от режима идеального вытеснения. Так, например, при параболическом распределении скорости потока для необратимой реакции первого порядка максимальное снижение степени превращения за счет неоднородности поперечного потока скорости может составлять 11% [195]. В работе [196] предложена методика оценки влияния пространственных неоднородностей на процесс и показано, что некоторые неравнв-мерности на входе в слой катализатора можно компенсировать соответствующим запасом катализатора в слое. Так, при неравномерностях температур перед последним слоем реактора окисление ЗОз в 80з/32 от +7 до —5° требуется 20%-ное увеличение количества катализатора. Но при неравномерностях более +10° ни при каком запасе катализатора нельзя достичь заданной степени превращения. В таких случаях необходима установка перед слоем хорошего смесителя и распределителя потока. Кроме того, неоднородности влияют на устойчивость процесса [192, 196]. Опыт работы и обслуживания промышленных реакторов подтверждает, что результаты моделирования процессов могут быть не-реализованы на практике при возможных отклонениях от принятого технологического режима работы реактора. Эти отклонения обусловлены пространственными неоднородностями. Так, например, при обследовании работы пятислойных контактных аппаратов, окисления ЗОа в 80 з производительностью 360 т/сут установлено что максимальная неоднородность поля температур на входе в последние два слоя достигает 25—30°, в результате чего конверсия на 0,3—0,6% оказалась ниже расчетной [197]. [c.325]

    Если вся система реакций (1.37), (1.38) обратима и близка к состоянию равновесия, то состав катализатора, вне зависимости от исходного, целиком определяется термодинамическими условиями равновесия. В этом случае, если состав катализатора, например окисла, является функцией давления одного из компонентов, например кислорода, то, в соответствии с условиями гетерогенного равновесия, для всей области температур Т и парциальных давлений Р, за исключением точки равновесия с определенными Т ш Р, катализатор будет представлять собой одну фазу. Если реакция проводится в точке равновесия, то катализатор может быть двухфазным, однако практическое осуществление такого случая невероятно. Иное дело, если протекающие в системе реакции, например реакции контактного окисления органических соединений, практически необратимы, тогда фазовый состав работающего катализатора целиком определяется кинетическими, а не термодинамическими параметрами. При проведении обратимых реакций в условиях, далеких от равновесия (что большей частью бывает на практике), фазоЬый состав катализатора также не определяется термодинамикой. [c.50]


Смотреть страницы где упоминается термин Окисление контактное катализаторы: [c.141]    [c.243]    [c.136]    [c.109]    [c.312]    [c.204]    [c.209]    [c.215]    [c.392]    [c.165]   
Инженерная химия гетерогенного катализа (1965) -- [ c.10 , c.69 , c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Замятина. Высокопрочная гранулированная контактная масса для окисления сернистого ангидрида во взвешенном слое катализатора

Катализаторы контактные яды

Контактное окисление аммиак потери катализатора

Контактное окисление аммиака катализаторы

Контактное окисление аммиака на неплатиновых катализаторах

Контактное окисление сернистого ангидрида в кипящем слое катализатора

Контактное окисление сернистого ангидрида на пористом катализаторе

Мухленов И.П., Румянцева Е.С., Филатов Ю.В. Контактные аппараты со взвеше.-шнм слоем катализатора для окисления сернистого ангидрида

Мухленов, Д. Г. Трабер, Ю. В. Филатов, Е. С. Румянцева, Ласточкин, А. А. Мегвинов, И. А. Ким. Кинетика контактного окисления сернистого ангидрида во взвешенном слое катализатора

Окисление контактное

Получение серной кислоты из сернистого ангидрида методом контактного окисления на твердых катализаторах

Сернистый ангидрид, контактное окисления его на твердых катализаторах



© 2025 chem21.info Реклама на сайте