Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиганды в окислительно-восстановительных

    Золото(I), как известно, является сильным окислителем. В связи с этим синтез приведенных выше устойчивых к самопроизвольному редокс-распаду смешанно лигандных соединений золота (I) представляет особый интерес. В соответствии с одной из гипотез стабильность комплексонатов золота(I) предопределяется их строением [284, 699, 700] В случае однородных комплексов золота(I) с монодентатными лигандами окислительно-восстановительный распад проходит через стадию их ассоциации с последующей димеризацией лигандов- [c.372]


    Золото (III) восстанавливается до металла лигандами, окислительно-восстановительный потенциал которых ниже 0,6 в [632]. [c.11]

    Понятие реакции комплексных соединений кроме различных изменений в составе самих комплексов — замещение лигандов, окислительно-восстановительных и внутримолекулярных реакций (таких, как изомеризация и рацемизация)—включает специфические реакции лигандов, находящихся в координированном состоянии (например, замещение лигандов), а также каталитические реакции с участием комплексных соединений. В данном разделе рассмотрены эти свойства с учетом динамических свойств различных элементов. [c.246]

    Статьи no внутрикомплексным соединениям, природе связи металл — лиганд, окислительно-восстановительным потенциалам, внутрикомплексным соединениям в биохимии и т. д. [c.221]

    Как функционирует молекула цитохрома с, пока еще неизвестно. Структура ее варианта с железом(1П) была определена только в 1969 г. методом дифракции рентгеновских лучей, а структура варианта с восстановленным железом(П)-в 1971 г. Лиганды в комплексе вокруг железа и компактная структура всего белка изменяют окислительно-восстановительную химию атома железа и обеспечивают связь окислительных и восстановительных процессов с предыдущими и последующими звеньями цепи терминального окисления. [c.259]

    Необходимо отметить, что реакции водорода в различных соединениях можно в одних случаях трактовать как окислительно-восстановительные либо как кислотно-основное взаимодействие (разд. 33.4), в других случаях — как кислотно-основное взаимодействие либо как реакции осаждения (разд. 33.3.2), а в третьих — как окислительно-восстановительные либо как реакции обмена лигандами (разд. 33.6.4), [c.460]

    Происходящая окислительно-восстановительная реакция между протонами воды и Н -лигандами сопровождается реакцией кислотно-основного типа. [c.465]

    Наряду с общими признаками реакций обоих типов име-тотся также и существенные отличия. Так, механизм окислительно-восстановительных реакций значительно сложнее, чем /реакций кислотно-основного взаимодействия. Это проявляется в том, что реакции кислотно-основного взаимодействия протекают очень быстро, в то время как реакции окисления — восстановления во многих случаях замедленны, что часто мешает проведению. анализа. Небольшая скорость ряда окислительно-восстановительных реакций обусловлена в основном тем, что электронные переходы часто сопровождаются частичным изменением или полным разрушением молекулярной структуры участвующих в реакции частиц. Поэтому окислительно-восстановительные реакции между катионами и анионами часто проходят через стадии обмена лигандов, что, например, имеет место при окислении иодид-ионов ионами железа (П1), которое обычно описывается простым уравнением  [c.158]


    При протекании окислительно-восстановительных реакций атомы лигандов во многих случаях образуют мостики.между реагирующими частицами (катионами), что можно показать на примере следующих хорошо изученных реакций  [c.159]

    Железо входит составной частью во многие биосистемы, в частности гемопротеины и системы небелковой природы (например, содержащиеся в микроорганизмах). В химии жизненных процессов существенную роль играют окислительно-восстановительные реакции порфириновых комплексов железа, которое может в них находиться в состояниях Fe(II) и Ре(III). В Зтих реакциях участвуют как электроны лигандов (их я-орбиталей), так и желе- [c.124]

    Теория поля лигандов позволяет построить приближенные молекулярные модели каталитических окислительно-восстановительных реакций превращения углеводородов [20, с. 106], в которых реагирующими частицами являются лиганды комплекса, образованного вокруг центрального иона переходного металла. [c.100]

    Значительная часть свойств координационных соединений обус ловлена электронной конфигурацией центрального иона, донор ными и акцепторными свойствами лигандов и природой связи между лигандом и центральным ионом. По этой причине большее место в этой главе будет уделено этим аспектам химии координа ционных соединений, нежели вопросам стереохимии, типам изо мерин, реакциям замещения и окислительно-восстановительным реакциям. Здесь не будет рассмотрено и возрастающее значение координационных соединении в области аналитической химии, биохимии и электрохимии. Для детального изучения этих и других аспектов химии координационных соединений полезны многие прекрасные руководства . [c.232]

    Возбуждение в области полос переноса заряда сопровождается окислительно-восстановительными реакциями, ведущими к изменению степени окисления металла или лиганда, например [c.377]

    Окислительно-восстановительные реакции во внутренней сфере наиболее распространены. При этом в качестве мостика могут выступать одноатомные и многоатомные лиганды, а также ионы. Лимитирующей стадией в указанных реакциях могут быть образование мостиковой связи, перенос электронов в мостиковом промежуточном соединении и др. Экспериментальные результаты приводят к выводу, что перенос электронов с большей скоростью осуществляется для многоатомных частиц по сравнению с одно- [c.280]

    Встречаются комплексы, в которых окисляется как центральный ион, так и лиганды независимо друг от друга. Так, например, с помощью потенциометрического титрования установлено, что при окислении оксалатов платины (И) получаются два потенциала один из них отвечает окислению платины, а другой — оксалат-ионам. Таким образом, течение окислительно-восстановительных реакций комплексных соединений зависит от природы связи различных лигандов с центральным ионом. [c.136]

    Ре + и Си +, не проявляют особой склонности повышать свою степень окисления. Следовательно, лиганды в комплексном соединении оказывают существенное влияние на возможность дополнительного присоединения или отдачи электронов центральным ионом. Поэтому и окислительно-восстановительные потенциалы комплексных соединений зависят не только от природы комплексообразователя, но и от лигандов. [c.166]

    Течение окислительно-восстановительных реакций комплексных соединений зависит от природы связи различных лигандов с центральным ионом. [c.166]

    Понижение величины окислительно-восстановительного потенциала, достигаемое в щелочной среде, делает кобальт (П1) достаточно стабильным — вода его уже не восстанавливает. Такого же эффекта стабилизации неустойчивого валентного состояния можно достичь путем введения, в систему с Со (1П) азот- и кислород-донорных лигандов. Благодаря связыванию нона Со + в прочное комплексное соединение, в соответствии с уравнением Периста [3] и в этом случае величина оказывается значительно более низкой, чем в системе с незакомплексованным Со (П1)  [c.140]

    Ионы металлов находятся в водных растворах в виде аквокомплексов. Особенно прочны аквокомплексы типичных комплексообразователей (кобальта, хрома, меди и др.). Окислительно-восстановительные потенциалы простых ионов по существу неизвестны, и имеющиеся данные относятся к аквокомплексам, в которых лигандом является вода. На величину окислительновосстановительного потенциала образующего иона большое влияние оказывает химическая природа лигандов. Например, по- [c.391]

    Тетраборат-ион в водных растворах бесцветен, подвергается глубокому гидролизу, не проявляет окислительно-восстановительных свойств, не обладает выраженной комплексообразующей способностью как лиганд. [c.436]

    Окислительно-восстановительные реакции применяют, когда для демаскирования необходимо изменить степень окисления. Например, если при pH 2 для устранения взаимодействия комплексона с ионами железа (III) последние восстановлены до ионов железа (И), для демаскирования следует железо (II) окислить до степени окисления -ЬЗ. Окислительно-восстановительные реакции используют также для разрушения органических лигандов, выполняющих роль маскирующих агентов. Например, если для маскирования ионов металла применены этилендиаминтетраацетат-ионы, их разрушают окислением в кислой среде перманганат-ионами. [c.246]


    Для химических методов анализа характерно использование специальных реагентов-осадителей, протон-доноров и протон-акцепторов, электрон-доноров и электрон-акцепторов, хромофорных агентов и разнообразных лигандов, общим свойством которых является способность к количественному (практически полному) взаимодействию с определяемым компонентом. Необходимым условием их применения является достаточная селективность взаимодействия (мерой которой служит разность характеристических параметров, например значений произведения растворимости ПР осадков или стандартных окислительно-восстановительных потенциалов).  [c.14]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]

    Объяснение влияния катиона на скорость разложения НСЮ вытекает из рассмотрения механизма перехода электронов от донора к акцептору в окислительно-восстановительных реакциях, протекающих при разложении НСЮ и гипохлоритов [38, 39]. Taube [40] и Льюис [41] механизм такого переноса электронов от донора к акцептору объясняют переносом их через мостик, образованный лигандом. При разложении НСЮ таким мостиком, по-видимому, является катион металла, на поверхности которого протекают электрохимические процессы. [c.12]

    Электростатические и поляризационные представления оказались полезными Д.ИЯ объяснения устойчивости, кислотно-основных и окислительно-восстановительных свойств комплексных соединений, но многие другие их свойства остались необъясненньши. Так, с позиций электростатической теории все комплексы с координационным числом 4 должны иметь тетраэдрическое строение, поскольку именно такой конфигурации соответствует наименьшее взаимное отталкивание лигандов. В действительности, как мы уже знаем, некоторые подобные комплексы, например, образованные платиной (II), построены в форме плоского квадрата. Электростатическая теория не в состоянии объяснить особенности реакционной способности комплексных соединений, их магнитные свойства и окраску. [c.357]

    Во многих случаях, например в комплексах Со + с лигандами-восстановителями (нитритом, азидом, нодидом) даже возбуждение в области (1— -переходов приводит к окислительно-восстановительному распаду комплексов с высоким кваР1товым выходом. В механизме фотолиза промежуточ[1ыми продуктами зачастую бывают свободЕ1ые радикалы. [c.377]

    Кроме полос интраконфигурационных (й —d,f—f) переходов в спектрах комплексных соединений могут наблюдаться также интенсивные полосы так называемых интермолекулярных переходов, которые лежат в УФ-области и примыкающей к ней части области видимого спектра. Это — полосы переноса заряда. Они возникают при поглощении квантов света, вызывающих переход электрона с МО, локализованной на лиганде, на МО, локализованную на центральном атоме, или наоборот, т. е. при внутримолекулярном окислительно-восстановительном процессе. К интермолекулярным относятся также так называемые Ридберговы полосы в УФ-спектре, связанные с возбуждением электронов центрального атома (изменение квантовых чисел п или I). [c.246]

    В результате комплексообразования химические и физико-химические свойства иона и лигандов претерпевают существенные изменения. Окраска, окислительно-восстановительные потенциалы, реакционная способность составных частей комплекса значительно отличаются от соответствующих свойств самого комплекса. Так, ионы меди в водном растворе (в форме гидратных комплексов) окрашены в светло-голубой цвет, а аммиачный комплекс медн — в темно-синий цвет. Каталитическая активность иона меди в его ги-дратном комплексе по отношению к реакции разложения перок- [c.222]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    В редоксипереходе (6.1), а также в приведенных примерах (ре " / Ре "", Си /Си) имеются только окисленная и восстановленная формы. Часто все же встречаются редоксипереходы, в которых кроме Ох и Рес1 участвуют еще другие элементарные объекты, сами не подвергающиеся ни окислению, ни восстановлению. Это имеет место в тех случаях, когда окислительно-восстановительный процесс связан с образованием и разрушением комплексных объектов, в том числе таких, в которых лигандом является кислород. Некоторые примеры  [c.86]

    Соединения металлов в природных водах. Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал, наличие лигандов) ионы металлов существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлоорганических соединений, которые могут быть истинно растворенными, коллоидно-дис-нерсными или входить в состав минеральных и органических взвесей. [c.41]


Смотреть страницы где упоминается термин Лиганды в окислительно-восстановительных: [c.406]    [c.158]    [c.628]    [c.630]    [c.406]    [c.118]    [c.118]    [c.628]    [c.630]    [c.351]    [c.20]    [c.135]    [c.165]    [c.859]    [c.46]    [c.173]    [c.239]    [c.73]    [c.484]    [c.354]   
Современная химия координационных соединений (1963) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте