Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотолиз механизм

    В состав ФПК входят, помимо основной органической составляющей, фотоинициатор и ингибитор. Фотоинициатор служит сенсибилизатором, который под действием УФ излучения приобретает избыточную энергию, возбуждается и обеспечивает образование свободных радикалов, необходимых для развития цепной химической реакции в основной органической составляющей. Ингибитор необходим для предотвращения спонтанных реакций, инициированных теплотой при хранении в период между введением фотоинициатора и непосредственным использованием, и для регулирования скорости фотолиза. Механизм действия ингибитора сводится к отдаче атома водорода его молекулой для насыщения свободной валентности активного радикала. Благодаря значительной вязкости ФПК обрыв органических цепей в результате взаимодействия радикалов протекает медленно. Это позволяет ингибитору оказать сдерживающее влияние [98]. [c.186]


    Исследование неустойчивых промежуточных веществ. Обнаружение неустойчивых промежуточных частиц, образующихся в ходе химического превращения, их идентификация и кинетические характеристики дают очень ценную информацию, необходимую для установления детального механизма химического превращения. Часто эту информацию можно получить методом ИК-спектроскопии. При этом используют различные методики снимают спектры в струевых условиях, когда создается достаточно высокая концентрация промежуточных частиц стабилизируют эти частицы быстрым охлаждением реагирующей смеси до очень низкой температуры в окружении инертных молекул (метод матричной изоляции) используют импульсные методы в сочетании с быстроскани-рующим ИК-спектрометром и т. п. Например, с помощью последнего метода в продуктах газофазного импульсного фотолиза дифтордибромметана при записи спектра примерно через 1 мс после вспышки была обнаружена и идентифицирована частица Ср2, а в продуктах фотолиза трифториодметана обнаружен три-фторметильный радикал. Кинетическими измерениями методом ИК-спектроскопии было показано, что энергия активации рекомбинации двух радикалов F3 отлична от нуля. [c.218]

    Для анализа особенностей кинетики и механизма реакций (5.2) и (5.3) рассмотрим упрощенную кинетическую схему. Предположим, что радикалы получают при фотолизе подходящего соединения  [c.74]

    Развитие фотохимии и радиационной химии породили такие методы, как импульсный фотолиз и импульсный радиолиз. Данные методы основаны на получении мощного светового потока или жесткого излучения за короткий промежуток времени, которые воздействуют на химическую систему и приводят к созданию больших концентраций реакционноспособных молекул. Отличие от релаксационных методов заключается в том, что под действием мощных световых, рентгеновских или Y-излучений происходят коренные изменения системы, а не просто небольшой сдвиг равновесия. Импульсные методы исследования широко применяются в излучении механизмов химических и физических процессов в химии, физике и биологии. При помощи метода импульсного фотолиза можно изучать такие реакционноспособные частицы, как свободные радикалы, ио Н-радикалы, ио ны, а также различные промежуточные продукты и состояния, образующиеся в ходе фотохимических превращений. [c.155]


    При изучении фотолиза диэтилкетона [280], протекающе- -о по аналогичному механизму, для отношения констант скорости диспропорционирования и рекомбинации этильных радикалов были найдены значения 0,23 и 0,25, а в некоторых опытах — 0,13 и 0,30. Для реакции взаимодействия этильных радикалов с молекулами диэтилкетона, найденная энергия активации равна 7,4 ккал, а стерический фактор — 2,5 10 , а для энергий активации рекомбинации и диспропорционирования приняты значения О [281]. [c.224]

    Согласно (20), индукционный период пропорционален времени облучения. Таким образом, зная механизм и скорость генерирования ингибитора при фотолизе, механизм ингибирования полимеризации, определив время облучения и индукционный период, можно вычислить скорость инициирования при любой конверсии. Практически для определения скорости инициирования поступают следующим образом (рис. 42) [45]. По достижении степени превращения, при которой желательно провести определение, систему облучают светом строго определенное время обл- В момент выключения света скорость полимеризации резко падает вследствие генерирования сильного ингибитора, а после прекращения облучения постепенно нарастает, достигая начальной величины через момент времени инд- Определив инд по графику и скорость фото- [c.192]

    В пользу этого механизма свидетельствует тот факт, что при взаимодействии пропана с СНг (полученным фотолизом диазометана или кетена) среди полученных продуктов, кроме бутана и изобутана, были обнаружены пропен и этан [188], которые могут образоваться в результате следующих реакций  [c.447]

    Эти исследования были предприняты с -целью избежать термического распада, который мог частично иметь место в условиях опытов по разложению диэтилртути [278]. Кроме того, механизм фотолиза диэтилкетона хорошо изучен [280, 281, 298]. Из этих опытов следовало, что продолжительность жизни этильных радикалов превышала 0,01 сек. Таким образом, для константы рекомбинации этильных радикалов получаются те же значения, которые получены для рекомбинации метильных радикалов [264] (тщательные повторные исследования по методу вращающегося сектора для константы рекомбинации дали значение 2,2- 10 в интервале 125—175°С [245]). [c.233]

    Оа( 2 ) и 0( Р) — молекула и атом кислорода в основных электронных состояниях. Из механизма сразу видно, что при поглощении одного кванта света разлагаются две молекулы озона. Интересно отметить, что при фотолизе озона ультрафиолетовым светом (2200<1 <3000 А) квантовый выход значительно выше и равен пяти—шести. [c.303]

    В идеале, для установления механизма фотохимической реакции следовало бы знать состояния всех молекул, участвую-ш,их в реакции, их энергию и время жизни, а также все побочные реакции. Практически далеко не все эти данные бывают доступны. Установление истинных путей превраш,ения всех молекул, поглотивших квант света, и всех свободных радикалов, образуюш,ихся в фотохимическом процессе, представляет собой аналитическую задачу, решение которой до настоящего времени едва ли было возможно... [47]. Методы определения механизмов фотохимических реакций по существу не отличаются от методов определения механизмов обычных органических реакций (гл. 6) идентификация продуктов, изотопная метка, детектирование и улавливание интермедиатов, изучение кинетики. Однако в случае фотохимических реакций появляется ряд новых факторов 1) образование большого числа продуктов, до 10—15 соединений 2) возможность изучать кинетику реакции в зависимости от большего числа переменных, так как на скорость реакции влияет интенсивность или длина волны падающего света 3) возможность детектировать исключительно короткоживущие интермедиаты, используя технику флеш-фотолиза. Кроме того, имеются еще два специальных метода. [c.321]

    То, что краситель и адсорбент составляют единую квантовую систему, видно из многих фактов. Самый наглядный из них состоит в том, что поглощение радиации любой, например самой малой, частоты в пределах полосы поглощения данного фосфора вызывает испускание всего его спектра излучения, в том числе и значительно больших частот, чем частот поглощенного света. Значит, кванты излучения поступают в общее пользование, причем энергия, недостаточная для излучения частот, которые превышают малую частоту поглощенного света, также поступает за счет общих ресурсов твердого тела. Не допускает иных толкований также тот факт, что хотя краситель, несомненно, находится только на поверхности, поглощение света характерных для него длинных волн (для которых кристалл, адсорбирующий данный краситель, практически прозрачен) сопровождается образованием металлического серебра в объеме кристалла бромида серебра. При этом чувствительность бромида серебра тем дальше сдвигается в сторону длинных волн, чем длиннее цепь сопряженных связей в структуре молекулы красителя (рис. 44). Дело в том, что электроны красителя находятся в волновом движении и что молекула красителя, соединяясь с кристаллом валентной связью, составляет с ним единое целое. Кристалл и краситель образуют единую квантовую систему. Не удивительно поэтому, что механизм фотолиза чистых [c.130]


    В том случае, когда присоединение брома и хлора к олефинам происходит по радикальному механизму, реакция эта носит цепной характер. Для ее инициирования широко используется фотолиз галогенов  [c.157]

    Для третьей группы фотохимических реакций квантовый выход больще единицы. Чаще всего он близок к двум или трем. Примером является реакция фотолиза (разложение под действием света) иодида водорода. Механизм этой реакции можно записать так  [c.314]

    Согласно правилу ЭАН атомы с нечетным числом электронов (V, Мп, Со и их аналоги) не могут образовать стабильных одноядерных карбонилов. И действительно, из этих продуктов устойчив лишь 17-электронный У(СО)б. Остальные могут быть получены в условиях искусственной стабилизации. Например, при фотолизе Мп(СО)4МО в матрице твердого СО получаются Мп(С0)4, Мп(СО)5, Мп(СО)б. Аналогичным образом получены нарушающие правило ЭАН нестойкие карбонилы и других металлов, например Ы1(С0)з, Ре(С0)4, Сг(С0)5 и т. д. Интермедиаты в реакциях замещения имеют либо уменьшенное, либо увеличенное по сравнению с исходным комплексом число лигандов (при диссоциативном механизме реакции соответственно). Поэтому реакции стабильных карбонилов протекают через интермедиаты, нарушающие правило ЭАН. Так, замещение СО в Н1(С0)4 лигандом Ь обычно идет через 16-электронный Ы (С0)з  [c.97]

    Другим доказательством этого механизма служит наблюдение ХПЯ (т. 1,разд. 5.8) в этой реакции 343] и то, что радикал АгО был детектирован методом флеш-фотолиза [344] и наносекундной КР-спектроскопии [345]. [c.375]

    В условиях фотолиза 2,5-циклогексадиеноны могут претерпевать множество разнообразных реакций, одна из них формально подобна ди-л-метановой перегруппировке [582]. Так, при фотолизе соединения 161 образуется бицикло[3.1.0]гекс-2-енон (166) [583]. Хотя формально эта реакция подобна превращению 156- 157, механизм ее отличается от механизма ди-я-метановой перегруппировки, поскольку облучение кетона может вызвать переход что, конечно же, невозможно для диена, [c.222]

    В последние годы для изучения химической кинетики стали широко применяться радиоспектроскопические методы и. в первую очередь, электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Усовершенствована аппаратура и получили дальнейшее развитие такие классические методы исследования, как инфракрасная ультрафиолетовая спектроскопия, спектрополяриметрия. Все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюминесцентные методы анализа короткоживущих частиц, импульсный фотолиз, метод остановленной струи, радиотермолюминесценции и т. п. Важную информацию о механизме химических превращений можно получить при изучении воздействия на процесс света, квантовых генераторов и ультразвука. Много информации позволяет получить комбинированное применение потенциометрических и оптических методов. [c.3]

    Для кинетических исследований радикалов и высокоэнергетических частиц фотохимическое инициирование реакции является часто наилучшим, поскольку позволяет не только надежно измерять скорость инициирования, но и проводить эксперименты при достаточно низкой температуре, избегая появления множества побочных реакций, что характерно при тепловом инициировании. Покажем на простом примере, как измерения квантового выхода можно использовать для определения механизма реакций и оценки констант скоростей. Для фотолиза смеси озона с кислородом излучением красной области спектра предполагается следующий механизм  [c.21]

    На рис. 1.2 представлена зависимость 1/Ф от [Ог][М]/[Оз] для экспериментального исследования фотолиза озона красным светом. Зависимость имеет линейный характер во всей области, что является сильным, но косвенным доказательством правильности предложенного механизма. Поскольку отсекаемый на ординате отрезок, равный 1/2ф1, очень близок к 0,5, первичный выход близок к единице. Поэтому нет необходимости искать другие первичные процессы в дополнение к реакции разложения (1.17). Из наклона приведенной зависимости следует, что при 18°С Аз/ 2 50 дм /моль. Этот результат превосходно согласуется с приведенными ранее величинами 2 и кз, полученными независимыми прямыми измерениями. [c.23]

    Прямой фотолиз воды. не. подходит для преобразования солнечной энергии, поскольку вода не поглощает в видимом спектральном диапазоне. Энергетический порог расщепления БОДЫ до радикальных фрагментов И и ОН примерно соответствует длине волны света Я = 240 нм, но даже на этой длине волны свет поглощается слабо. В то же время ионный окислительно-восстановительный механизм требует переноса четырех электронов. Для переноса каждого электрона необходима свободная энергия 472/4=118 кДж/моль, соответствующая энергии поглощаемого кванта света с длиной волны примерно 1000 нм в ближнем ИК-диапазоне (или, в терминах потенциала, около 118 000/96 500=1,22 В). Такое многоквантовое окислительновосстановительное расщепление воды представляется многообещающим. Вопрос заключается в том, как его осуществить. [c.268]

    Диапазон энергий квантов С.и.-от долей эВ до сотен кэВ (т. е. включает область мягкого рентгеновского излучения). С. и. характеризуется непрерывным спектром, высокой степенью поляризации, большой интенсивностью (превосходит на неск. порядков излучение в рентгеновских трубках), чрезвычайно малой расходимостью, малой длительностью импульсов (до 100 пс). Эти св-ва позволяют использовать С. и. в спектроскопии, рентгеновском структурном анализе, для изучения оптич. активности молекул, возбуждения люминесценции, инициирования фотохим. р-ций и др. Так, благодаря большой интенсивности источников С. и. удалось зарегистрировать мол. спектры поглощения с разрешением 0,003 нм. Разрабатываются импульсные методы спектроскопии, использующие С. и. для исследования метастабильных продуктов фотолиза, механизма сверхбыстрых р-ций и т. п. Рентгеновский структурный анализ биол. объектов, в частности монокристаллов белков, использующий С. и., позволяет значительно сократить время регистрации рентгенограмм, уменьшить радиац. нагрузки на образец. С. и. применяют также, напр., для фотолитографии, в произ-ве интегральных схем. [c.357]

    Д Приведетсые значения получены [47] для фотолиза СгЗ в присутствии П2. Эти результаты, по всей вероятности, завышены возможно, что механизм фотолиза, принятый авторами, неверен. Например, квантовый выход мо кет быть более 1 механизм гибели радикалов ВЗ недостаточно хорошо известен. Кроме того, при использовавшихся длинах волн атомы В имеют избыточную энергию > 4 0 ккал/маль, поэтому ваншую роль должны были играть горячие радикалы . [c.262]

    По-видимому, механизм фотолиза ацетона является простейшим и наиболее выясненным в области от 100 до 200". В этой области квантовый выход для СО близок к единице, что согласуется с тем фактом, что расиад радикала СН3СО на СНз СО происходит более быстро, чем любая реакция второго порядка, в которой он может участвовать. [c.330]

    И горячих радикалов. При достаточно высоких температурах (выше 200°), при которых радикалы НСО и СН3СО присутствую только в очень небольших концентрациях по сравнению с концентрацией СН3, фотохимический механизм, вероятно, похож на пиролиз. Тогда можно ожидать, что вклад, цепных реакций в суммарную реакцию будет даваться уравнением, сходным с уравнением (Х1П.14.7) для пиролиза, если заместить ку АсН на 2ф/а, гд Ф — доля СН3СНО, разлагаюш егося на свободные радикалы, я 1а — удельная скорость поглощения света. Формула для высокотемпературного фотолиза обычно имеет вид [c.335]

    Очень трудно составить кинетическую схему низкотемпературного пиролиза, исходя из данных по элементарным процессам, включающим радикалы СНО и СН3СО. Схема более сложна, чем схема для пиролиза этана, и, как было отмечено раньше, в данном случае образуются более сложные продукты. Интересно отметить, что там, где продукты простые, вследствие большой длины цепи реакция становится чрезвычайно чувствительной к влиянию стенок и примесей. С другой стороны, при более низких температурах, когда длина цепи уменьшается, реакция не так чувствительна к влиянию стенок и образуются сложные продукты, которые трудно анализировать. Несмотря на все работы, которые были сделаны по пиролизу или фотолизу СН3СНО, элементарный механизм известен с некоторой точностью только прп высоких температурах. Но даже и в этом случае процессы инициирования должны специально изучаться . Значительный теоретически1 [ интерес представ- [c.335]

    Фотолиз Оз изучался при различных условиях [65, 141, 142], но полученные результаты не так полны и не так достоверны, как в случае пиролиза. При облучении красным светом [141] оказывается, что результаты соответствуют данному механизму, за исключением очень высоких отношений (0з)/(02), для которых квантовый выход, по-видимому, медленно повышается. С другой стороны, довольно значительная темновая реакция при низких температурах вместе с гетерогенной реакцией и катализом делает эти измерения довольно сомнительными. Хейдт [65] нашел очень высокий квантовый выход (около 6) в относительно концентрированном Оз при коротких длинах волн (< 2500А) это может быть доказательством цени, обусловленной электронновозбужденными состояниями О2, которые могут образовываться при этих коротких длинах волн. [c.352]

    Фотолиз H3ONO [169] сходен с реакцией пиролиза. N2O является важным продуктом, количество которого уменьшается с повышением температуры. Механизм, сходный с механизмом для EtONO, может быть записан в виде [c.364]

    В растворах эти побочные реакции идут с участием растворителя, как например, в случае распада натрий-этила в-эфире [272]. Изучение распада этилсеребра в растворе [273] показало, что разложение не инициирует полимеризации стирола или метилметакрилата, как это обычно наблюдается при распаде соединений, поставляющих радикалы. Однако-радикальный механизм распада еще не может быть окончательно исключен на основании этого факта. Термический распад паров тетраэтилсвинца [274], тетраэтилсилиция [275] и тетраэтилгермания [276] изучен только при высоких температурах, и разнообразие образующихся продуктов затрудняет интерпретацию опытных данных. При фотолизе этил-иодида [2771 было найдено, что реакцией рекомбинации диспропорционирования этильных радикалов можно пренебречь по сравнению с другими реакциями этил-радикалов. [c.223]

    Масспектроскопическое изучение продуктов фотолиза дейтерированного диэтилкетона [286] показало, что этильные радикалы не только рекомбинируют, но и диспропор-ционируют, согласно механизму голова к хвосту . [c.226]

    В одном из первых кинетических исследований реакций (9.1) Вижьен и Стеси 11721 наблюдали димеризацию и дисмутацию дейте-рированных этильных радикалов, которые получались путем фотолиза 2,2,4,4-тетрадейтеродиэтилкетона. Авторы рассмотрели два возможных механизма реакции диспропорционирования этильных радикалов механизм голова к хвосту СНз— Сз- + Н —СНа— [c.104]

    На основе изучения изотопического состава продуктов (90% этилена было СзНзОз) авторы работы 1172] заключили, что радикалы диспропорционируют по механизму голова к хвосту (СНуСОз—Н—СНзСОз). Аналогичные выводы были получены позднее Мак-Несби и другими при рассмотрении фотолиза а.си -диэтил-кетона — 4 1173]. Масс-спектрометрический анализ продуктов показал, что в основном при диспропорционировании этильных радикалов получаются СНдСОзН и СНз=СОз. [c.104]

    Во многих случаях, например в комплексах Со + с лигандами-восстановителями (нитритом, азидом, нодидом) даже возбуждение в области (1— -переходов приводит к окислительно-восстановительному распаду комплексов с высоким кваР1товым выходом. В механизме фотолиза промежуточ[1ыми продуктами зачастую бывают свободЕ1ые радикалы. [c.377]

    Другой метод свободнорадикального арилирования заключается в фотолизе арилиодидов в ароматических растворителях [282]. Как правило, выходы в этой реакции выше, чем в реакциях 14-16 или 14-19. Арилиодид может содержать группы ОН или СООН. Механизм аналогичен механизму реакции 14-16. Арильные радикалы генерируются при фотолитическом расщеплении Аг1 Аг--Ы. Реакция применима для внутримолекулярного арилирования (аналогично реакции Пшорра) [283]. Она родственна реакции фотолиза арилталлийбис (трифтороацетата) в ароматическом растворителе (т. 2, реакция 12-20). В рассматриваемом случае также получаются несимметричные диарилы с хорошими выходами [284]. [c.100]

    Азиридины можно приготовить непосредственно из олефинов при фотолизе или термолизе смеси субстрата с азидом [610]. Реакция осуществлена для К = арил, циано, EtOO и RSO2, а также и для других групп R. Для реакции возможны по крайней мере два механизма. В одном из них азид превращается в нитрен (т. 1, гл. 5, разд. Нитрены ), который присоединяется к двойным связям аналогично карбенам (реакция [c.232]

    Около 90% общей массы атмосферы содержится в тропосфере. Большая часть следовых газов также находится здесь. Поверхность Земли является основным источником следовых газов, хотя часть N0 и СО может возникать в результате гроз. Гидроксильные радикалы преобладают в химии тропосферы так же, как атомы кислорода и озона — в химии стратосферы. Сво- боднорадикальные цепные реакции, инициированные ОН, окисляют Н2, СН4, другие углеводороды, а также СО и Н2О. Таким образом, реакции представляют низкотемпературную систему сгорания. Свободнорадикальные цепные процессы запускаются фотохимически, хотя стратосферный озон ограничивает солнечное излучение на поверхности Земли областью длин волн более 280 нм. На этих длинах волн наиболее важными фотохимически активными соединениями являются Оз, NO2 и НСНО. Все три соединения могут в конце концов давать ОН (или НО2) и тем самым инициировать окислительные цепи. Однако критической стадией служит фотолиз озона, поскольку другие фотолитические процессы обязаны ему либо происхождением, либо тем, что в его присутствии они протекают более эффективно. Хотя только 10% атмосферного озона находится в тропосфере, все случаи первичного инициирования окислительных цепей в естественной атмосфере зависят от этого озона. Часть озона переносится в тропосферу из стратосферного озонового слоя, но в самой тропосфере также существует механизм генерации зона. Если присутствует NO2, то фотолиз NO2 (при <400 нм) [c.222]

    Фотоинициирование катионной полимеризации может быть достигнуто путем образования комплекса с использованием смеси ароматических диазониевых солей и анионов, отличающихся от нуклеофильных, вроде РРе". При фотолизе диазоние-вые соли выделяют N2 и поэтому имеют тенденцию замещаться ароматическими солями иодония и сульфония. Один из предложенных механизмов инициирования может быть проиллюстрирован для такой соли диарилиодоиия, как дифенилиодоний-гексафторфосфат, (СбН5)21+РРб  [c.261]

    В последние годы ситуация в химической кинетике стала меняться особенно быстро. Появились и нашли широкое применение радиоспектроскопические методы и в первую очередь электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Благодаря совершенствованию аппаратуры дальнейшее развитие получили такие классические методы исследования, как инфракрасная и ультрафиолетовая спектроскопия. Наряду с этим все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюмине-сцентные методы анализа коротко живущих частиц, метод остановленной струи, импульсный фотолиз, радиотермолюминесценция и т. п. Важную информацию о механизме химических превращений можно [c.3]


Смотреть страницы где упоминается термин Фотолиз механизм: [c.528]    [c.266]    [c.300]    [c.328]    [c.329]    [c.94]    [c.225]    [c.276]    [c.2]    [c.218]    [c.258]    [c.2]   
Криохимия (1978) -- [ c.69 ]

Основы химической кинетики (1964) -- [ c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Фотолиз



© 2025 chem21.info Реклама на сайте