Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оксихинолин хлориды

    Осадок растворяют в соляной кислоте при этом образуются хлорид металла и свободный оксихинолин. К раствору прибавляют бромистый калий и титруют его из бюретки раствором КВгО, известной концентрации. При взаимодействии КЕгО, и КВг в кислой среде выделяется бром, реагирующий с оксихинолином. После превращения всего оксихинолина в бромпроизводное в растворе появляется избыток брома, который легко обнаружить по обесцвечиванию им красителей. [c.104]


    В гравиметрии применяют различные осадители. Это могут быть неорганические реагенты, например соляная или серная кислоты (для осаждения ионов серебра или бария), хлорид бария (для осаждения сульфат-иона), водный раствор аммиака (для осаждения гидроксидов) и т.п. Большое значение имеют органические осадители, обладающие рядом преимуществ перед неорганическими. Наиболее часто применяют 8-оксихинолин, диметил- [c.25]

    Хлорид натрия 6. 8-Оксихинолин [c.22]

    Методика. В пробирку вносят 2—3 капли раствора хлорида магния, 2 капли раствора аммиака и прибавляют по каплям раствор хлорида аммония до растворения первоначально выпавшего белого осадка гидроксида магния М (0Н)2. К раствору прибавляют по каплям раствор 8-оксихинолина до выпадения желто-зеленого осадка оксихинолината магния. [c.386]

    Алюминий в олове определяют фотометрическими методами с алюминоном [938], хромазуролом [488], эриохромцианином R [2271 и оксихинолином [654]. Во всех случаях олово надо предварительно удалить выпариванием в виде бромида или хлорида. [c.217]

    Для экстракционно-фотометрического определения -церия (IV) растворяют 6 г 8-оксихинолина в 200 мл сухого/ не содержащего кислоты, хлороформа и добавляют 20 мл ацетона. Раствор готовят в день применения. Хлороформ для приготовления раствора встряхивают в делительной-воронке с половинным объемом разбавленного аммиака (1 20), содержащего 25 г/л хлорида аммония. После отделения от водной фазы к хлороформу добавляют для осущ-ки карбонат калия, взбалтывают и дают отстояться в течение 1 ч, затем фильтруют. [c.186]

    Применяют изоамиловый спирт для экстракции тиоциа-натных комплексов железа при фотометрическом определении ванадия — 8-оксихинолином, молибдена — фенил-гидразином, меди — диэтилдитиокарбаминатом для отделения хлорида лития от других хлоридов щелочных металлов, извлечения нитрата кальция из смеси с нитратом стронция. [c.245]

    Применяется как заменитель этанола для приготовления спиртовых растворов диметилглиоксима, 8-оксихинолина, промывки аналитических осадков, отделения хлоридов калия и натрия от хлорида магния, для разделения нитратов бария и кальция, улучшения осаждения сульфатов кальция и стронция. [c.246]

    Для определения урана (VI) в этих случаях анализируемый раствор нейтрализуют раствором аммиака, образующийся осадок гидроокисей металлов растворяют добавлением серной кислоты. Затем прибавляют около 10 г хлорида, нитрата или сульфата аммония и по каплям 3% -ный раствор 8-оксихинолина в 3% -ной уксусной кислоте. После этого раствор слабо подщелачивают 6 N раствором аммиака и сверх этого добавляют еще 20 мл раствора аммиака, нагревают до 60—65° и при этой температуре выдерживают в течение 30 мин. Выделившийся осадок отфильтровывают и далее поступают так же, как и при осаждении из уксуснокислого раствора. [c.69]


    Отделение от меди. При определении кальция медь может осаждаться оксихинолином в слабокислой среде (до pH 6,1) [1040[. Сульфид меди легко фильтруется и отмывается при осаждении из раствора, содержащего тиомочевину, мочевину и хлорид аммония. Этим способом можно количественно отделить медь от кальция [16121. [c.163]

    Концентрирование осаждением. Метод осаждения получил широкое распространение в практике спектрохимического анализа благодаря использованию групповых органических реагентов [832]. Описано [787, 1325] концентрирование следов галлия, германия и других элементов в природных водах и хлориде калия осаждением раствором оксихинолина в 2 N уксусной кислоте, танниновой кислотой и тионалидом. [c.161]

    Аддукт D уже при 50 °С легко и количественно димеризует-ся в [К-метил(метил-8-хинолилоксисилил)-8-оксихинолинил]-хлорид (102), содержащий внутримолекулярную координационную связь N > Si. Реакция 8-(триметилсилокси)хинолина с метил(хлорметил)дихлорсиланом l H2SiMe l2 также приводит к координационному соединению 102. [c.134]

    Методика. Небольшое количество кристаллического хлорида лития Li l растворяют в 5 каплях 95%-го этанола и прибавляют 25 капель раствора, приготовленного из 2 ч. (по объему) 0,03%-го раствора 8-оксихинолина, 1 ч. 0,12%-го раствора КОН и 14 ч. 0,08%-го раствора уксусной кислоты. Смесь разбавляют до -10 мл 95%-м этанолом. При облучении раствора УФ-светом наблюдается яркая голубая флуоресценция (свечение) раствора. [c.346]

    В отличие от тетрафторида для тетрахлорида реакции присоединения мало характерны. С хлоридами других элементов он, как правило, образует системы эвтектического типа. Установлено образование комплексов лишь с небольшим числом органических лигандов ацетонитрилом, ацетофенолом, ацетилацетоном и другими -дикетонами, а также с азотсодержащими основаниями (как пиридин, фенан-тролин и т. п.). Большинство этих комплексов — твердые, нелетучие, бесцветные вещества, гидролизующиеся водой и влагой воздуха. С о-оксихинолином тетрахлорид реагирует, образуя нерастворимое соединение  [c.166]

    Хром с эриохромцианином R образует комплекс, значите тьно менее окрашенный, чем комплекс алюминия [11141, и задерживает развитие окраски комплекса алюминия вследствие связывания части реагента [8081. Хром можно удалять в виде хлорида хромила. Однако эта операция удлиняет анализ, поэтому предложены другие способы устранения его влияния. По Хиллу [8081, добавление FeS04 и 8-оксихинолина способствует образованию комплекса алюминия в присутствии больших количеств хрома. Ряд авторов [926, 12471 компенсирует влияние хрома введением таких же количеств его в стандартные растворы. Лили и Розин [926] для определения алюминия в сталях рекомендуют составлять несколько калибровочных графиков для разных содержаний хрома. При содержании 0—2% хрома наблюдается сравнительно хорошее совпадение с графиком, составленным без его введения. [c.103]

    Сульфонафтазоксин синтезирован сочетанием диазотиро-ванной 1-нафтиламино-8-сульфокислоты с 8-оксихинолином и применен в качестве индикатора для объемных определений хлоридов и цианидов [1, 2]. На основании литературных данных [3—5] можно считать, что сульфонафтазоксин является смесью двух моноазосоединений 5-изомера с небольшим количеством 7-изомера Нами уточнен метод его синтеза и показано, что реактив, пригодный для аналитических целей, можно получить лишь исходя из допол1гительно очищенного исходного вещества — 1-нафтиламии-8-сульфокислоты. [c.170]

    Основные методы получения и очистки иодидов рубидия и цезия (нейтрализация карбонатов иодистоводородной кислотой, использование аннонгалогенаатов [184]) аналогичны методам получения и очистки соответствующих хлоридов и бромидов. Для синтеза иодидов рубидия и цезия могут быть также использованы хорошо известные реакции взаимодействия либо гидроокиси и галогена (в данном случае иода) при нагревании (см. раздел Бромиды рубидия и цезия ), либо карбоната (гидрокарбоната) с иодом в присутствии восстановителя (порошок карбонильного железа, перекись водорода и др.). В обоих случаях сухой остаток после выпаривания раствора прокаливают и выщелачивают водой. Рабочие растворы перед кристаллизацией иодидов можно очищать и экстракционным методом, особенно эффективным, когда требуется удалить примеси переходных элементов. В частности [185], для очистки иодидов от примесей железа, марганца, меди, кобальта и никеля (до 5-10 вес.% каждой примеси) водные растворы иодидов последовательно обрабатывают растворами дити-зона (при pH = 7,0—7,5) и о-оксихинолина (при pH = 5—6) в четыреххлористом углероде, а затем после удаления органического растворителя пропускают (для поглощения воднорастворимой части комплексообразователей и ССЦ) через хроматографическую колонку, наполненную послойно AI2O3 и канальной сажей. [c.104]


    Для определения урана (VI) анализируемый раствор объемом около 100 мл, содержащий до 100 лг урана в виде сульфата, нитрата или хлорида уранила, нейтрализуют раствором аммиака, прибавляют 1—2 г ацетата аммония, подкисляют приблизительно 5 мл уксусной кислоты, нагревают до кипения и по каплям прибавляют 3%-ный раствор 8-оксихинолина в 3%-ной уксусной кислоте. Раствор осадителя прибавляют до прекращения образования осадка при его соприкосновении с верхним отстоявшимся слоем раствора. После охлаждения выпавший осадок отфильтровывают через фильтрующий тигель, промывают теплрй водой до бесцветного фильтрата, высушивают при 105—140° и взвешивают, фактор пересчета равен 0,3385. В случае взвешивания в виде закиси-окиси урана осадок отфильтровывают через бумажный фильтр, промытый осадок высушивают в платиновом тигле, затем для предотвращения механических потерь при прокаливании присыпают слоем безводной щавелевой кислоты и прокаливают прн температуре около 900°. Определению урана в этих условиях не мешают щелочные и щелочноземельные металлы.  [c.69]

    Определение осаждением хинальдиновой кислотой. При добавлении хинальдината натрия (натриевой соли 2-хинолинкарбоновой кислоты) к слабокислому или нейтральному раствору нитрата, хлорида или сульфата уранила уран количественно осаждается в виде основных солей хинальдиновой кислоты [837]. Состав осадка Точно не установлен. По условиям осаждения и по характеру мешающих элементов осаждение хинальдиновой кислотой в основном совпадает с осаждением 8-оксихинолином. [c.73]

    Для открытия висмута к. 3—5 мл слабоазотнокислого или сернокислого раствора прибавляют 2 мл 1 %-ного раствора оксихинолина в 0,2 н. Пг304 и 1—2 мл 0,1 н. раствора KJ. В присутствии висмута образуется огненно-красный осадок. Из очень разбавленных растворов через 2—5 мин. появляется оранжевая или красная муть. Открываемый минимум 5—10 т В1. Предельное разбавление 1 760 ООО. При многочасовом стоянии удается открыть еще 2—3 у В1 при предельном разбавлении 1 1 400 ООО. Хлориды (0,15 г КаС1) понижают чувствительность реакции в 3—4 раза. [c.233]

    К холодному слабосернокислому или азотнокислому раствору, по возможности свободному от хлоридов, прибавляют избыток 5%-ного раствора 8-оксихинолина в 0,2 н. H2SO4 и затем по каплям 0,1 н. раствор иодида калия до тех пор, пока образующийся осадок не соберется в хлопья. После этого осадок сейчас же отфильтровывают через тигель Гуча с асбестом или через бумажный фильтр и промывают раствором, приготовленным следующим образом. К 50 мл 2 н. H2SO1 прибавляют 25 мл 0,1 н. раствора KJ, 1,8 н. 8-оксихинолина, немного (на кончике ножа) сернокислого гидразина и разбавляют водой до литра. Промытый при отсасынании осадок растворяют в 10%-ной НС1, прибавляют 0,5 г K N, 1—2 г крахмала и титруют 0,1 п. или 0,02 н. раство- [c.234]

    Можно определить микрограммовые количества ртути иодометрически со стильбоксином (динатриевой солью стильбен-4,4-бис-(азо-5,8-оксихинолин)-3,3-дисульфокислотой) [169]. Принцип метода заключается в следующем ртуть образует с данным реактивом при pH 4,5 комплексное соединение, окрашенное в фиолетовый цвет сам же реактив — буровато-желтого цвета. При титровании данного комплексного соединения иодидом образуется более прочное комплексное соединение ртути с иодидом (HgJ4 ) и освобождается стильбоксин, который меняет окраску раствора. Этот метод предложен для определения Hg(П) в чистых растворах нитрата, ацетата и хлорида ртути и позволяет определить 0,5— 1000 м,кг ртути в 4—10 мл с точностью до 0,5—1%. [c.88]

    На бумагу наносят 0,01 мл анализируемого раствора хлоридов металлов и высушивают. Хроматографирование производят в течение 16—18 час. За это время фронт растворителя перемещается на 45—50 см. После высушивания хроматограммы проявляют пятна бериллия 5%-ным раствором 8-оксихинолина в смеси метанола, СНСЬ и воды (pH 9,4) и сравнивают флуоресценцию в ультрафиолетовом свете со стандартами, содержащими 0,1 —10 ммоля Ве на полоске бумаги. [c.151]

    Соли циркония гасят излучение кальция [496, 648, 897[. В пламени в нитратных растворах образуется соединение состава 1 1 (GaZrOj) в солянокислых растворах предполагается образование соли agZrjO (Са Zr = 3 2) [463]. На содержание циркония можно внести поправку [648]. Особенно эффективно устраняет влияние циркония и гафния оксихинолин. При добавлении его непосредственно в анализируемый раствор можно определять кальций в соединениях циркония и гафния, не прибегая к приемам отделения [462 . Описана отгонка основы в виде хлорида циркония при определении кальция методом пламенной фотометрии [1278]. [c.142]

    При экстракции в присутствии и-бутиламина определению 120 мкг Mg не мешают 260 мкг К, 390 мкг Na, 80 мкг Ь1, 100 мкг Са, 180 мкг 8г, 230 мкг Ва, 35 мкг В, 50 мг 8Ь, 15 мг Ав, по 25 мг Зе и Те, 160 мг Сг(1И), 25 мг Мо(У1), 300 мг (У1) не мешают также Ке, платиновые металлы (кроме Рс1 в больших количествах) [1233]. Са и Ве частично экстрагируются, ес.ли вводить слишком много оксихинолина и бутиламина. 8п(1У) не экстрагируется, но в количествах 3 мг мешает экстракции оксихинолината магния. При помощи 1—3 мл 30%-ной Н2О2 можно связать 240 мг Т1, 175 жг V и 100 мги (VI). Цианидами маскируют до 125 мг Си, 320 мг Ag, по 100 мг Аи и N1, по 270 мг Р(1 и Hg(II), до 10 мг Zn, С(1, Ре(П) Ре(1П) после восстановления с ВОз и Hg(I) после окисления до Hg(II) также можно маскировать цианидами. До 15 мг А1 можно связать триэтаноламином при этом на каждые 2,5 мг А1 надо вводить по 1 мл триэтаноламина. Экстракцией оксихинолинатов в отсутствие бутиламина отделяют 8с, РЗЭ, 1п, Оа, Т1(1П), 8п(П), РЬ, гг, Н , ТЬ, В1, Nb, Та, Мп(П), Мп(1П), Со в этих условиях Т1(1) удаляется неполностью. Кальций можно маскировать тартратами или цитратами [991, 1220,1233]. Не мешают ацетаты, оксалаты, цитраты, цианиды, хлориды и нитраты при pH 11-11,5 - до 0,3 М ионов 80Г 0,1 М РОГ- Комплексон III, фториды, сульфосалициловая кислота мешают экстракции [729 1233], умеренные количества РО -ионов не мешают [729]. [c.157]

    Выбор того или иного электрода и потенциала для титрования зависит от состава титруемого раствора анодный метод с платиновым электродом особенно пригоден в присутствии различных примесей, так как при указанном выше потенциале обычные элементы (железо трехвалентное, ионы водорода, кислород и др.) не будут давать диффузионного тока. При всех вариантах титрования мешают вещества, осаждающиеся оксихинолином в данных условиях (в кислой среде в присутствии иодида), в первую очередь кадмий и медь. Свинец, который также может мешать, осаждают в виде сульфата в сильнокислом растворе (азотная кислота 2,5 М) осадок отфильтровывать нет надобности, титрование проводят непосредственно в присутствии осадка сульфата свинца. При титровании следует избегать присутствия больше чем 0,1 н. хлорид-ионов, так как хлорид увеличивает растворимость осадка иодокси-хинолята висмута. Описанный метод позволяет определять 15 мг (и больше) висмута в 30 мл раствора, причем средняя ошибка не превышает 1% (судя по таблицам, приведенным в статье ). Определение меньших количеств висмута ограничено растворимостью осадка. [c.187]


Смотреть страницы где упоминается термин оксихинолин хлориды: [c.133]    [c.134]    [c.133]    [c.162]    [c.186]    [c.79]    [c.129]    [c.320]    [c.167]    [c.119]    [c.383]    [c.173]    [c.79]    [c.58]    [c.141]    [c.383]    [c.60]   
Современная химия координационных соединений (1963) -- [ c.15 , c.36 , c.45 , c.71 , c.94 , c.95 , c.159 , c.184 , c.268 , c.333 , c.334 , c.338 , c.347 , c.348 , c.360 , c.375 , c.376 , c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Оксихинолин



© 2024 chem21.info Реклама на сайте